Revised Oceanic Mo Isotope Budget from Deep-Sea Pelagic Sediments

ZHIBING WANG¹, JIE LI², BANGQI HU³, LIANG ZOU³, XUE DING³, LE ZHANG¹, JINLONG MA¹ AND GANGJIAN WEI¹

Understanding the modern global oceanic Mo cycle and its isotopic budget is essential for establishing Mo isotopes as a quantitative proxy for oceanic oxygen levels. While oxygenated deep-sea pelagic sediments enriched with Fe-Mn oxyhydroxides serve as a primary Mo oxic sink, the isotopic composition of authigenic Mo in these deposits remains poorly constrained. Analysis of Mo isotope data from two Pacific Ocean deep-sea pelagic sediment cores reveals a depth-dependent increase in δ^{98} Mo values from $-0.55 \pm 0.04\%$ to $0.19 \pm 0.03\%$, likely governed by Fe-Mn cycling during early diagenesis and/or deposition rate variations. By integrating these findings with existing data, we estimate a revised authigenic oxic Mo flux of 1.52×10^{8} mol yr⁻¹, with a δ^{98} Mo value of $-0.09 \pm 0.23\%$. This revised flux exceeds previous estimates by more than twofold and exhibits an isotopic signature approximately 0.6% heavier than Fe-Mn crusts and nodules. Based on these results, we propose a revised global Mo isotope budget. These findings significantly advance our understanding of pelagic sediment contributions and enhance the precision of Mo isotope-based paleoceanographic reconstructions.

¹Guangzhou Institute of Geochemistry, Chinese Academy of Sciences

²State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences

³Qingdao Institute of Marine Geology, China Geological Survey, Qingdao, China