Signatures of Hadean mantle extraction in the sources of Indian komatiites from combined $\mu^{182}W\text{-}\delta^{186/184}W \text{ systematics}$

ARATHY RAVINDRAN 1 , RUIYU YANG 1 , FRANK WOMBACHER 1 , SUKALPA CHATTERJEE 2 , NANILA SASI 3 AND CARSTEN MÜNKER 1

Heterogeneities in µ¹⁸²W in Archean rocks relative to modern mantle values allow valuable insights into Hadean mantle differentiation processes on Earth, and the evolution of different mantle reservoirs with time that led to the formation of the first continents. Possible processes explaining µ¹⁸²W anomalies are early silicate differentiation, missing late veneer or core contributions. Early- to mid-Archean komatiites, which are hightemperature high-degree melts that best represent the primary mantle, have previously shown evidence for compositional heterogeneities. Komatiites from the Dharwar and Singhbhum cratons in India with a late Hadean mantle extraction age of ~4.19-4.15 Ga [1, 2] examined for the first time do not show μ¹⁸²W anomalies. However, robust assessments of primary μ¹⁸²W signatures have been challenging in Archean komatiites, due to the open system behaviour of W [3, 4]. An efficient proxy to assess W mobility at lower temperatures are variations of the $\mu^{182}W$ signatures with stable $\delta^{186/184}W$ values that provide direct insights on the effect of metasomatic or secondary processes in the W budget of the rocks [5].

High-precision MC-ICP-MS measurements of radiogenic $^{182}W/^{184}W$ and stable $\delta^{186/184}W$ compositions of Indian komatiites with variable W/Th acquired through isotope composition [4] and double-spike [6] techniques yielded uniform µ¹⁸²W values with an average of -1.0 \pm 2.3 (95% CI) and $\delta^{186/184}$ W ranging from -0.088±0.012‰ to 0.264±0.016‰ (2SE). Komatiites affected by secondary W mineralisation (W/Th ~1600) also display no discernible µ182W anomalies. Weak correlations are observed between the $\delta^{186/184}W$ values of some of the Dharwar komatiites and their W/Th and W, but not with their respective µ¹⁸²W values (cf. [3]) or proxies for magmatic differentiation. Therefore, the source(s) of secondary W likely tap country rocks, where, unlike for $\mu^{182}W$ signatures, mass-dependant $\delta^{186/184}W$ are fractionated to a certain extent, confirming a primary Hadean signature observed in the Indian komatiites and an overall homogeneity of μ^{182} W.

- [1] Ravindran et al. (2024), G-cubed 25
- [2] Maltese et al. (2022), Communications Earth and Environment 3
 - [3] Messling et al. (2023), G-cubed 24
 - [4] Tusch et al. (2022), PNAS 119
 - [5] Kurzweil et al. (2020), GPL 14

¹University of Cologne

²University of Cambridge

³Pondicherry Central University