Cobalt incorporation into low temperature pyrite: toward a further understanding of the polysulfide pathway to pyrite

MS. QIANYU DENG^{1,2}, PIERRE LE PAPE³, JULIE AUFORT⁴, FARID JUILLOT⁵, GEORGES ONA-NGUEMA⁶, MARC BLANCHARD⁷, BENOÎT BAPTISTE⁸, LUDOVIC DELBES⁸, CAMILLE BAYA⁹, NICOLAS MENGUY¹⁰, JEAN-MICHEL GUIGNER¹, OLIVIER PROUX¹¹, CAMILLE DUQUENOY¹², ROMAIN GUILBAUD¹², FRANCK POITRASSON¹² AND GUILLAUME MORIN⁹

¹The Institute of Mineralogy, Physics of Materials and Cosmochemistry (IMPMC)

Authigenic pyrite (FeS₂) is often considered as a geochemical archive for reconstructing past marine conditions. Notably, cobalt (Co) abundance in marine sedimentary pyrite is considered as reverse proxy for atmospheric oxygen levels (Large et al., 2017). As a bio-essential nutrient, Co plays a significant role in present and past biogeochemical processes such as methionine synthesis and anaerobic metabolisms (Swanner et al., 2014; Robbins et al., 2016). However, Co can reach harmful concentrations in mine drainages (e.g., Ziwa et al., 2021), which questions its potential toxicity towards humans and ecosystems. Thus, better understanding the mechanism of Co incorporation into diagenetic pyrite is crucial for evaluating the ability of this mineral to act as source or sink for Co in contaminated environments, as well as for refining the use of sedimentary pyrite as a paleo-proxy. In this study, pyrites were synthesized via the polysulfide pathway under anoxic conditions at ambient temperature with varying initial aqueous Co concentrations. Using High Energy Resolution Fluorescence Detected (HERFD) Co K-edge X-ray Absorption Near Edge Structure (XANES) and Extended X-ray absorption fine structure (EXAFS) analyses, we obtain key information on the partition of Co between pyrite and its precursors during the pyritization process (Deng et al., submitted). Moreover, the Co²⁺ ion acts as

geochemical probe revealing unprecedented information on the molecular structure of the precursors to pyrite. Beyond the single case of Co, it yields mechanistic explanations for the reported role of trace metals such as Ni and As on the kinetic of low temperature pyrite formation. This study has implications for further understanding the mechanisms of pyrite formation via the polysulfide pathway and of trace metal incorporation in this mineral during early diagenesis.

Large et al. (2017). Society of Economic Geologists, Inc. Economic Geology 112, 423–450.

Robbins et al. (2016). *Earth-Science Reviews 163*, 323-348. Swanner et al. (2014). Earth-Science Reviews 163, 323-348. Ziwa et al. (2020) *Minerals 11*, 22.

Morin et al. (2017) Geochemical Perspectives Letters 5, 6-11. Baya et al. (2021). Geochimica et Cosmochimica Acta 300, 333-353.

Baya et al. (2022) Chemical Geology 613, 121139.

Deng et al. (submitted to Geochimica et Cosmochimica Acta)

²Sorbonne Université

³IMPMC (CNRS-IRD-MNHN)

⁴Géosciences Environnement Toulouse

⁵ERL IRD 206, UMR 7590 CNRS-MNHN-Sorbonne Université

⁶Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590

⁷Géosciences Environnement Toulouse - CNRS

⁸Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie

⁹Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 Sorbonne Université-CNRS-MNHN-IRD

¹⁰IMPMC, Sorbonne Université, CNRS UMR 7590, MNHN

¹¹OSUG, CNRS-Univ. Grenoble Alpes, Saint Martin d'Hères

¹²Géosciences Environnement Toulouse, CNRS