Influence of Groundwater Inorganic Solutes on the Corrosion and Reactivity of Fe_xN Nanoparticles

JANA KŘÍŽEK OBORNÁ¹, MIROSLAV BRUMOVSKÝ², VESNA MICIĆ³. JOSEF KAŠLÍK⁴ AND JAN FILIP⁴

¹Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic

²University of Natural Resources and Life Sciences, Department of Forest- and Soil Sciences, Institute of Soil Research, Peter-Jordan-Straße 82, 1190 Vienna, Austria

 ³ÖBB-Infrastruktur AG, Praterstern 3, 1020 Vienna, Austria
⁴Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech

Partial or complete nitriding of nanoscale zero-valent iron (nZVI) particles has been shown to enhance their reactivity toward chlorinated ethenes while suppressing their corrosion in water [1]. In this study, we investigated the reactivity of iron nitride nanoparticles primarily composed of the face-centered cubic y'-Fe₄N phase under realistic groundwater compositions. To this end, the nanoparticles were aged for one month in environments containing varying concentrations of inorganic solutes, and in two distinct groundwater samples, and subsequently exposed to trichloroethylene (TCE). Our findings demonstrated that aged y'-Fe₄N nanoparticles effectively degrade TCE across a broad range of inorganic solute concentrations, including Ca2+, Mg2+, Na+, Cl-, SO42-, and HCO3-. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses revealed that the predominant corrosion products were "white rust" and "green rust" minerals. In contrast, the presence of dissolved HPO₄²⁻ and NO₃⁻ substantially suppressed TCE degradation by promoting the formation of the minerals vivianite and magnetite, respectively, which passivated the nanoparticle surface. These findings highlight the potential of y'-Fe₄N nanoparticles as a promising material for groundwater remediation, offering both enhanced reactivity contaminants and prolonged reactive lifetime environmentally relevant conditions, especially in groundwaters not impacted by fertilizers [2].

Acknowledgments

Republic

This work was co-funded by the Technology Agency of the Czech Republic (the Programme for the Support of Applied Research, Experimental Development, and Innovation in the Environmental Fields – Environment for Life) and the National Recovery Plan, supported by the EU's RRF under Project No. SS07020145 "Application of Iron Nitride Nanoparticles for Reductive Dechlorination of Chlorinated Ethylenes in Groundwater." The authors acknowledge the assistance provided by ERDF/ESF project TECHSCALE (project No. CZ.02.01.01/00/22 008/0004587) and Research Infrastructure

NanoEnviCz, supported by the Ministry of Education, Youth and Sports of the Czech Republic (project No. LM2023066).

References

- [1] Brumovský M., Micić V., Oborná J., Filip J., Hofmann T., Tunega D. (2023), J. Hazard. Mater. 442, 129988.
- [2] Křížek Oborná J., Brumovský M., Micić V., Kašlík J., Filip J. (2025), J. Environ. Chem. Eng. 13, 115431.