Untangling the primary biotic and abiotic controls on oxygen, inorganic and organic carbon isotope signals in modern microbialites

ROBIN HAVAS^{1,2}, DR. CHRISTOPHE THOMAZO^{2,3}, JEANNE CAUMARTIN^{4,5}, MIGUEL INIESTO⁵, HUGO BERT⁶, DIDIER JÉZÉQUEL⁷, DAVID MOREIRA⁵, ROSALUZ TAVERA⁸, VLADIMIR BETTENCOURT⁸, PURIFICACIÓN LÓPEZ-GARCÍA⁵, EMMANUELLE VENNIN² AND KARIM BENZERARA⁴

¹Laboratoire EPOC, UMR CNRS 5805, Université de Bordeaux ²Laboratoire Biogéosciences, UMR CNRS 6282, Université de Bourgogne, France

⁶Université Claude Bernard Lyon 1, ENS de Lyon, CNRS, UMR 5276 LGL-TPE

⁷IPGP, CNRS UMR 7154, Université de Paris & UMR CARRTEL, INRAE-USMB

⁸Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de Mexico

Microbialites are complex organo-sedimentary structures involving different degrees of biomineralization and interaction of biotic and abiotic factors. They formed throughout most of Earth history, over a wide range of geological contexts and environmental conditions. The carbon and oxygen isotope records of microbialite carbonates (often their main constituents) have thus been widely used for reconstructing paleoenvironments and biomineralization processes. However, such geochemical records - in both ancient and modern settings - do not always enable to properly distinguish among the multiplicity of factors that influence microbialites formation. We analyzed the carbon and oxygen isotope compositions from bulk and micro-drilled carbonates as well as bulk organic carbon isotope compositions in microbialites from four Mexican volcanic crater lakes. This survey of four lakes allows comparing microbialite formation processes and their geochemical record within distinct physicochemical contexts. Combining the geochemical analyses with petrographic, mineralogical, and microbiological data, we show that the potential for isotopic biosignature preservation primarily depends on physico-chemical conditions, notably on alkalinity levels. Our results allow proposing a new interpretation framework for the microbialite carbonate C isotopes, as recording the balance between the microbialite net primary productivity and the amount of precipitation that relates to physico-chemical forcing, on top of reflecting the signature of the fluid from which microbialites precipitate. The signals of microbialite oxygen isotope compositions highlight a lack of understanding in the oxygen isotope records of relatively rare carbonate phases (e.g., hydromagnesite). We show that these

signals are primarily influenced by the basins' hydrology, though biological effects may also play a (minor) role. Therefore, both carbon and oxygen isotopic signals may record a combination of different local/global and biotic/abiotic factors, making microbialites intricate archives of their growth environment, which should thus be interpreted with cautions and in the light of their surrounding sediments.

³Institut Universitaire de France (IUF)

⁴IMPMC, Sorbonne Université, CNRS UMR 7590, MNHN

⁵Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech