New insights on the ⁷Be cycle in the

MELANIE GRENIER¹, PIETER VAN BEEK¹, PAUL LERNER², VIRGINIE SANIAL³, MARC SOUHAUT¹, MARION LAGARDE¹, OLIVIER MARCHAL⁴ AND JEAN-LOUIS REYSS⁵

The cosmogenic radionuclide beryllium-7 (7Be) has been applied as a tracer of dynamical processes in the upper ocean and of atmospheric deposition of trace elements at the sea surface. These applications usually assume that ⁷Be is entirely in the dissolved form, and that scavenging and downward export of ⁷Be by settling particles can be neglected. Grenier and coauthors (2023) explore these assumptions and more generally assess the significance of the ⁷Be activity in the particulate fraction, through the generation of vertical profiles of particulate ⁷Be in the open ocean. We report vertical profiles of ⁷Be activity in suspended particles (⁷Be_p) collected in various oceanic regions: the Mediterranean Sea (DYFAMED station), the Indian Sector of the Southern Ocean (KEOPS2 cruise), the Sargasso Sea (OFP station), and the subpolar North Atlantic Ocean (GEOVIDE cruise). We find that, in each oceanic region, ⁷Be_n activities are generally higher in the mixed layer than in the thermocline and vary within a range consistent with previous ⁷Be_p measurements for the open ocean. For the GEOVIDE cruise, the ⁷Be_n activities measured on different filter types at different depths are corrected for filter offsets. We then combine measurements of total ⁷Be activity (Shelley et al., 2017) with our measurements of ⁷Be_n activity to estimate the solid/solution partitioning of ⁷Be. On average, the particulate fraction would represent 6% of total ⁷Be activity at 5-m water depth, 22% at 20 m and 9% at 70 m. The distribution coefficient K_d for ${}^{7}\text{Be}$ increases with depth, suggesting that scavenging of dissolved ⁷Be by particles is more pronounced in the thermocline than in the mixed layer when differences in particle concentrations are taken into account. Overall, our study suggests that, at least in some oceanic regions, the removal of ⁷Be by marine particles may be significant and may need to be considered in applications of ⁷Be as a tracer of oceanic processes and atmospheric deposition.

References:

Grenier, M, et al. New insights on the ⁷Be cycle in the ocean. DSR1, 2023.

Shelley, R U, et al. Quantification of trace element atmospheric deposition fluxes to the Atlantic Ocean during spring 2014. DSR1, 2017.

¹LEGOS (CNRS/Toulouse University/CNES/IRD)

²Columbia University

³Univ Toulon, Aix Marseille Univ., CNRS/INSU, IRD, UM 110, Mediterranean Institute of Oceanography

⁴Woods Hole Oceanographic Institution

⁵LSCE