Linking thallium isotope cycling to seafloor hydrothermal sulfides forming by active diffusers at the Kolumbo submarine volcano, Hellenic volcanic arc

NIKOLAOS ZEGKINOGLOU¹, STEPHANOS KILIAS¹, ALES VANEK², MARTIN MIHALJEVIC³, MARIA VANKOVA³, VASILIOS PLETSAS¹, PARASKEVI NOMIKOU¹, PARASKEVI POLYMENAKOU⁴ AND MANUEL KEITH⁵

¹National and Kapodistrian University of Athens

We report the first ε^{205} Tl composition of hydrothermal sulfides from active rhyolitic pumice-hosted, CO2-degassing, SMS diffusers ("KCO₂Ds")¹, from the Aegean Kolumbo arc-volcano. Nineteen samples of Tl-rich (≤8.2 wt%) SMS came from actively boiling "KCO₂Ds" reflecting different mineralogic zones, i.e., (chalcopyrite-pyrite-galena-marcasite), (pyrite-sphalerite-semseyite) and outer (orpiment-realgarstibnite, semseyite-meneghinite-pyrite); also, fifteen pumice samples were analyzed. The ε^{205} Tl values of our samples range from -2.38 to +6.96, and -3.43 to -1.27 e-units, for SMS and pumice, respectively. The measured range, and average ε^{205} Tl_{numice} values, of -3.43 to -1.27 ε -units, -2.21 ε -units, respectively, are consistent with magmatic Tl being transported via volcanism to the (sub)seafloor, and incorporated into rhyolitic pumice², preserving its primary depleted-mantle signature³. This is because, despite its extreme volatility, Tl remains in the sulfide melt² during magmatic degassing, and its isotopic composition is only marginally affected during magmatic differentiation⁴. An isotopic zoning towards heavier compositions exists, between the inner (range: +0.02—+2.6 $\varepsilon^{205}Tl_{inner}$; average: +1.42 $\varepsilon^{205}Tl_{inner}$) and intermediate sections (range: +2.23—+6.96 ϵ^{205} Tl_{intrm}; average: ϵ^{205} Tl_{intrm}=+4.29) whereas the outer sections exhibit significantly lighter values (range: -2.38—+1.86 ε^{205} Tl_{outer}; average: -1.4 ε^{205} Tl_{outer}). Combined with textural and geochemical characteristics for fluid-boiling¹, the measured $\epsilon^{205} Tl_{outer}$ values are consistent with transport of Tl by liquid, preferentially enriched in 205Tl values governed by Rayleigh-type distillation. The broad isotopic fractionation from the inner to intermediate diffuser sections $(\leq \epsilon^{205} \text{Tl} = 6.94)$ are interpreted by sulphide precipitation during crystallization of a sulphide melt⁶. The latter is manifested by sulfide-hosted (sub)micron polyphase sulphide/sulphosalt inclusions enriched in Tl and low-melting point chalcophile elements (LMCEs)⁵, generated by ≥270°C LMCE-rich fluidinduced CDR reactions as further reflected in $\epsilon^{205}Tl$ vs. molar

Tl/As-ratios diagram⁶. Rayleigh distillation modelling and sulphide precipitation during crystallization of a sulphide melt explain the substantial Tl isotope fractionation up to $9.34~\epsilon$ values.

[1] Zegkinoglou et al. (2023) Geology, **51**(11), 1072–1076 [2] Hector et al. (2024) Mineralium Deposita, **59**, 1229–1248 [3] Nielsen et al. (2015) Earth Planet. Sci. Lett, **430**, 416–426 [4] Hettmann et al. (2014) Chemical Geology, **366**, 1–13 [5] Hastie et al. (2020) Economic Geology, **115**(2), 241–277 [6] Hettmann et al. (2014) American Mineralogist, **99**, 793–803.

²Czech University of Life Sciences Prague

³Charles University, Prague, Czech Republic

⁴Hellenic Centre for Marine Research

⁵GeoZentrum Nordbayern, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany