Quantitative conversion of sulfate oxygen for high-precision triple oxygen isotope analysis

YU WEI¹, **HAO YAN**², YONGBO PENG³ AND HUIMING BAO⁴

¹Frontiers Science Center for Critical Earth Material Cycling, State Key Laboratory of Critical Earth Material Cycling and Mineral Deposits, School of Earth Sciences and Engineering, Nanjing University

Triple oxygen isotope composition ($\Delta'^{17}O$) of sulfate carries information on sulfur cycle as well as signatures of atmospheric O2, O3, and surface water of the geological past. However, existing analytical techniques can only achieve partial oxygen yield during the conversion from sulfate to the analyte O_2 , which results in isotope fractionation and impedes the $\Delta^{'17}O$ comparison with other oxygen-bearing compounds (e.g., H₂O) on the VSMOW-SLAP scale. Here, we present an analytical method involving high-temperature graphite reduction, CO discharge, and Pt-catalyzed CO₂-O₂ isotope exchange, the R-D-E method, that achieves ~100% conversion of sulfate oxygen to CO₂. Compared with the widely-used CO₂-laser-fluorination technique, our R-D-E method has a better Δ'^{17} O precision (9 per meg) and requires a smaller sample amount, as low as 4 µmol of sulfate (equivalent to 1 mg BaSO₄), with both $\Delta^{'17}$ O and δ^{18} O being determined simultaneously. Using this method, we report the triple oxygen isotope compositions of three international reference materials (NBS127, IAEA-SO-5, and IAEA-SO-6) and three in-house references on the VSMOW-SLAP scale. We found that the sulfate $\Delta^{'17}$ O values measured on the partiallyyielded O₂ from the fluorination technique are 10-200 per meg higher than those obtained by our R-D-E method, depending on the oxidant used (e.g., F2 or BrF5). Incomplete conversion of sulfate oxygen during the high-temperature graphite reduction would result in lower δ^{18} O and higher $\Delta^{'17}$ O values. This work highlights the needs for recalibration and re-interpretation of the published sulfate $\Delta'^{17}O$ data when sulfate $\Delta'^{17}O$ values of interest are small.

²International Center for Isotope Effects Research, School of Earth Sciences and Engineering, Nanjing University

³Nanjing University

⁴International Center for Isotope Effect Research, Nanjing University, China