
DISSOLVED HYDROGEN IN LORRAINE COAL BASIN (FRANCE)

JACQUES PIRONON¹, PHILIPPE DE DONATO¹,
RAYMOND MICHELS¹, DR. ODILE BARRÈS, PHD¹,
MARIE-CAMILLE CAUMON², AURÉLIEN RANDI¹,
CATHERINE LORGEOUX³, METZGER MOMBOMOUKETO², SALIM ALLOUTI², ROMAIN HEMELSDAEL⁴,
YVES GÉRAUD⁵, MATHIEU LAZERGES², VITALIY
PRIVALOV², ANTOINE FORCINAL⁴, FADY NASSIF⁴,
MÉDÉRIC PIEDEVACHE⁶, THOMAS FIERZ⁶, YANICK
LETTRY⁷, DAN LEVY⁸, DAVID V BEKAERT⁹ AND
BOUCHAIB TIBARI²

¹CNRS

The Lorraine Carboniferous Basin, located on the France-Germany border and dating from the Westphalian to Stephanian age, is covered by the Mesozoic Paris Basin. Our study combines petrographic observations with hydro-geochemical data using the innovative SysMoGTM probe system, developed by Solexperts and CNRS/University of Lorraine. This system was deployed in the Folschviller borehole FOLS1A (Moselle, France), drilled in 2006 by La Française De l'Energie (LFDE²). Simultaneously, rock samples were collected from core drillings, revealing siliciclastic sediments with pores and fractures cemented by diagenetic minerals such as siderite, ankerite, quartz, dickite, sphalerite, and barite. Current fluid gases are dominated by CH₄, resulting from the thermal maturation of coal over time. At a depth of 1250 m, H2 constitutes approximately 18 mol% of the gas mixture, with a dissolved H₂ concentration in water around 3 mg.L⁻¹. This concentration increases with depth, suggesting potential concentrations of about 30 mg.L⁻¹ at 3 km depth. Siderite and ankerite (Fe(II)) may reduce water to hydrogen in deeper compartments of the Carboniferous sediments. Additionally, H₂ genesis from coal is not ruled out. Both hypotheses are temperature-dependent, requiring over 150°C, corresponding to a depth of 5 km, for initiation. Isotopic analyses of H₂ revealed remarkably light isotopic signatures (-700% to -765‰), consistent with a crustal origin of natural gases dissolved in the groundwater of the Lorraine Carboniferous Basin when combined with He data and compared to literature. The linear hydrogen concentration profile measured in the FOLS1A vertical borehole suggests a hydrogen diffusion profile with a source likely deeper than 5 km. The H₂ plume is governed by P-T conditions and H2 consumption through oxidation or bacterial activity in Mesozoic sediments or soil. Detectors located at -24 m and -1 m depth away from FOLS1A do not detect hydrogen, indicating that natural hydrogen exploration cannot rely solely on surface measurements and requires drilling. Furthermore, $\rm H_2$ resources in the form of dissolved gas should not be overlooked to estimate the resources.

Acknowledgments: This work was conducted by GeoRessources and LFDE as part of the REGALOR project, supported by the Grand-Est Region and the FEDER.

²Université de Lorraine

³Université de Lorraine, CNRS, GeoRessources

⁴LFDE

⁵Géoressources, Lorraine University

⁶Solexperts

⁷Solexperts AG

⁸HYREVEAL

⁹CRPG - Université de Lorraine