## The Ba isotopic composition of Fagradalsfjall Fires reveals fluid-modified lithospheric mantle beneath the mid-Atlantic ridge

JIAN-QIANG LIU $^1$ , VALENTIN R TROLL $^2$ , FRANCES M. DEEGAN $^2$ , LUKÁŠ KRMÍČEK $^3$ , GANG ZENG $^4$ , XIAOJUN WANG $^1$  AND LIHUI CHEN $^1$ 

The asthenosphere, which is the source of mid-ocean ridge basalts (MORB), has been demonstrated to be highly heterogeneous based on geochemical studies of abyssal peridotites, ophiolites and ultra-slow spreading MORBs. However, the origin of this heterogeneity remains controversial. Here we investigate upper mantle chemical heterogeneity beneath the Reykjanes Peninsula (Iceland), a subaerial segment of the mid-Atlantic ridge, by analyzing combined Ba-Sr-Nd isotopic compositions of basaltic lavas from the 2021-2022 Fagradalsfjall fires eruptions. Our findings imply that magmatic rocks erupted from the mid-Atlantic ridge (including those from the Azores, Iceland and Atlantic MORBs) are best explained by ternary mixing between distinct mantle endmembers. Besides depleted MORB mantle (DMM) and mantle plume components, a third component is necessary to account for the heavy Ba isotope values along with moderate enriched Sr-Nd isotopes and  $K_2O/TiO_2$ , La/Sm, Zr/Y, and Th/Yb ratios. This third endmember is compositionally best represented by the fluidmodified lithospheric mantle that foundered into the asthenosphere during the opening of the Atlantic Ocean. Our results suggest that fluid-modified mantle components may be widespread and are responsible for upper mantle chemical heterogeneity under Reykjanes and potentially elsewhere too.

<sup>&</sup>lt;sup>1</sup>Northwest University

<sup>&</sup>lt;sup>2</sup>Uppsala University

<sup>&</sup>lt;sup>3</sup>Brno University of Technology, Faculty of Civil Engineering

<sup>&</sup>lt;sup>4</sup>Nanjing University