## An Inverse Modelling Approach to Constrain Be Cycling in the Subpolar North Atlantic

PAUL LERNER<sup>1</sup>, MELANIE GRENIER<sup>2</sup>, OLIVIER MARCHAL<sup>3</sup> AND PIETER VAN BEEK<sup>2</sup>

<sup>1</sup>Columbia University

Beryllium-7 is a short-lived cosmogenic radionuclide that has been used as a tracer of atmospheric deposition at the sea surface and of physical processes in the upper ocean. These applications generally assume that (i) the fraction of marine <sup>7</sup>Be in particulate form is negligible, and/or (ii) the interactions between the particulate and dissolved forms of 7Be in seawater can be neglected. In this study, we test different steady-state models of upper ocean <sup>7</sup>Be cycling from measurements of total and particulate <sup>7</sup>Be activities collected at two stations of the GEOVIDE cruise in the subpolar North Atlantic (May-June 2014). The most complete model includes vertical advection, vertical diffusion, gravitational settling, radioactive decay, atmospheric deposition, and reversible exchange between dissolved <sup>7</sup>Be (<sup>7</sup>Be<sub>d</sub>) and particulate <sup>7</sup>Be (<sup>7</sup>Be<sub>p</sub>). Application of a generalized least-squares procedure shows that this model reproduces the measured <sup>7</sup>Be activities at both stations to within their uncertainties (± 1 standard deviation). At station 51/60, in the East Greenland-Irminger Current, models that neglect adsorption and/or desorption can still reproduce the measured activities, while at station 69, in the southern Labrador Sea, models that neglect reversible exchange or desorption poorly fit the data. Thus, <sup>7</sup>Be<sub>d</sub> at station 51/60 could have been supplied entirely by surface deposition, whereas <sup>7</sup>Be<sub>d</sub> at station 69 originated at least partly from <sup>7</sup>Be<sub>p</sub> release into solution. The subsurface <sup>7</sup>Be<sub>n</sub> maxima at both stations seem to require a flux of <sup>7</sup>Be between particles and solution at station 69 but not at station 51/60. We also find that total <sup>7</sup>Be deposited at the ocean surface is nearly balanced by radioactive decay, while radioactive decay can exceed surface <sup>7</sup>Be<sub>d</sub> deposition by up to 40%. Hence, reversible exchange is important to consider in applications of <sup>7</sup>Be<sub>d</sub> as a deposition tracer. The steady state assumption does not alter our results regarding the solid-solution exchange of <sup>7</sup>Be, but it does result in significant biases when deriving atmospheric <sup>7</sup>Be<sub>tot</sub> deposition fluxes from water column <sup>7</sup>Be<sub>tot</sub> inventories. Overall, our findings suggest that reversible exchange could significantly influence the oceanic cycling of <sup>7</sup>Be at some locations, and should not be systematically neglected when using <sup>7</sup>Be<sub>d</sub> as an oceanic tracer.

<sup>&</sup>lt;sup>2</sup>LEGOS/Université de Toulouse

<sup>&</sup>lt;sup>3</sup>Woods Hole Oceanographic Institution