Quantifying the transfers of metals and sulfur by geological fluids using in-situ spectroscopy

GLEB S. POKROVSKI¹, DR. MARIA A. KOKH, PHD^{2,3}, ELENA F. BAZARKINA⁴, ELSA DESMAELE⁵, DR. CLÉMENT LASKAR^{1,6}, ERIC LAHERA⁷, OLIVIER PROUX⁸, DENIS TESTEMALE^{9,10}, JEAN-LOUIS HAZEMANN¹⁰ AND RODOLPHE VUILLEUMIER⁵

Our society needs metals, but recycling alone will be unable to meet the economy growth and energy transition demand for most of them. To better manage known mineral resources and to find new ones in the Earth's crust, we need to understand their formation that is largely controlled by hydrothermal fluids. These fluids extract metals from rocks or magmas and transport and deposit them in concentrated form in the right place at the right moment, to create an ore deposit. The key point is to know the solubility and chemical speciation of metals and their ligands in the fluid phase at elevated temperatures and pressures. However, this knowledge cannot be acquired by exclusively studying minerals and ore - the natural end products of fluid reactions occurring at depth. Quantifying such fugitive metal species and complexes in a multi-ingredient hydrothermal soup requires insitu spectroscopic approaches combined with thermodynamic analyses and molecular simulations.

In this contribution, we show how in-situ synchrotron X-ray absorption spectroscopy, coupled with other experimental and theoretical methods, has allowed us to gain a quantitative vision of the role of sulfur in the concentration and transport of chalcophile metals (Au, PGE, Mo) by hydrothermal fluids in the Earth's crust. These studies used a unique optical hydrothermal autoclave (Figure) developed and installed at FAME and FAME-UHD beamlines at the ESRF [1], along with high energy resolution fluorescence detected X-ray absorption spectroscopy (HERFD-XAS) setups [2]. The combination of spectroscopic data with in-situ solubility measurements and molecular modeling tools allows the quantification of both identity and stability of metal complexes with the major sulfur ligands

hydrogen sulfide and trisulfur ion [3-6], enabling the construction of more accurate thermodynamic models for metal transport across the lithosphere [7].

- [1] Testemale et al (2024) High Pres Res 44, 277.
- [2] Proux et al (2017) J Env Qual 46, 1146.
- [3] Pokrovski et al (2015) PNAS 112, 13484.
- [4] Pokrovski et al (2021) PNAS 118, e2109768118.
- [5] Laskar et al (2022) GCA 336, 407.
- [6] Pokrovski et al (2022) Am Mineral 107, 369.
- [7] He et al (2024) PNAS 121, e2404731121.

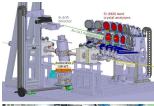


Figure. HERFD-XAS setup with a technical scheme and a photo of an experiment, at FAME-UHD (BM16) beamline at the ESRF combining a high-resolution crystal analyzer spectrometer with the hydrothermal reactor for in situ measurements of metal speciation and solubility in aqueous fluids at elevated temperatures and pressures. The autoclave is tilted from the vertical axis to match the required Bragg angle of the crystals to selectively probe the Au $L\alpha 1$ fluorescence line

¹Géosciences Environnement Toulouse - CNRS - Université Toulouse III

²Universität Potsdam

³Institut für Mineralogie - WWU

⁴European Syncrotron Radiation Facility, ESRF and Institut Néel

⁵Ecole normale supérieure - PSL Université - Sorbonne Université - CNRS

⁶Laboratoire de Génie Chimique - CNRS - Univ Toulouse III - INP

⁷Univ. Grenoble Alpes, CNRS, IRD, INRAE, Météo France, OSUG-FAME

⁸OSUG, CNRS-Univ. Grenoble Alpes, Saint Martin d'Hères

⁹FAME beamline - ESRF

 $^{^{10}}$ Institut Néel - CNRS - Univ Grenoble Alpes - FAME beamline - European Synchrotron Radiation Facility