Authigenic uptake accounts for the marine potassium budget

XUECHAO WU^{1,2}, SHOUYE YANG³, KLAUS WALLMANN², FLORIAN SCHOLZ⁴, YANGUANG DOU⁵, JUNJIE GUO³ AND XINNING XU¹

¹State Key Laboratory of Marine Geology, Tongji University

Potassium (K) is a major cation in seawater, but its budget remains not well understood. Marine authigenic clays are assumed to have played a substantial role in regulating the seawater chemistry and Earth's climate. However, the global importance of K-rich authigenic clays for the marine K budget remains poorly quantified. Here, we investigated the K/Al ratio of particulate matter and its spatial variations along the Changjiang (Yangtze) River-Estuary-East China Sea transect, aiming to reveal the influence of authigenic uptake processes on the marine K budget. By combining our new data on the K composition of various sediment and porewater samples with previously published data, we found that the K/Al ratio of marine particulates is substantially higher than that of the riverine endmember, with the averages of 0.31 ± 0.04 and 0.25 ± 0.02 , respectively. Combined with the observation of decreasing K concentration with depth in porewater and an increasing abundance of green grains towards the shelf, we propose that these geochemical changes are caused by the authigenic uptake of K from the porewater/seawater. Our preliminary calculation suggests that when upscaled to all the river-dominated ocean margin, the global uptake flux of K is approximately 81 ± 62 Tg yr⁻¹, which is comparable in magnitude to the dissolved flux coming from global rivers, highlighting the pivotal role of authigenic mineral formation in modifying the geochemistry of seawater and marine sediments.

²GEOMAR Helmholtz Centre for Ocean Research Kiel

³State Key Laboratory of Marine Geology, Tongji University, Shanghai, China

⁴Institute for Geology, Center for Earth System Research and Sustainability (CEN), Universität Hamburg

⁵Qingdao Institute of Marine Geology, China Geological Survey