Modeling the marine nitrogen cycle dynamics during the warm Miocene

YING CUI¹, CHRISTOPHER J. SOMES², ANDREAS OSCHLIES², SHIJUN JIANG³, FENG ZHU⁴, JIANG ZHU⁴ AND PROF. XINGCHEN TONY WANG, PHD⁵

The Miocene epoch (23.03 to 5.33 Ma) was characterized by a warmer climate and moderately elevated CO2concentrations (~400 to 850 ppm) compared to the present day. As a result, Miocene has been widely viewed as a viable analog for future climate scenarios. Recent isotope observations from the Middle Miocene Climatic Optimum (MMCO, 17.5 to 14.5 Ma) indicate a contraction of oxygen-deficient zones and a reduction of watercolumn denitrification in the Pacific, suggesting a fundamentally different marine nitrogen cycle under warmer conditions. However, the mechanisms driving these changes remain elusive. In this study, we use the University of Victoria (UVic) Earth model 2.9, implementing Model of Ocean Biogeochemistry and Isotopes (MOBI) that simulate carbon and nitrogen isotopes explicitly to unravel the nitrogen cycle dynamics during the Miocene. We use the iCESM derived wind fields to drive four CO₂ scenarios (400, 416, 560, and 832 ppm), varying topography, and rates of nitrogen fixation and denitrification to test the sensitivity of these parameters on the distribution of nutrient and nitrogen isotopes globally and regionally. We will discuss these results and its implications for the response of the marine nitrogen cycle to warmer climates.

¹Montclair State University

²GEOMAR Helmholtz Centre for Ocean Research Kiel

³Hainan University

⁴National Center for Atmospheric Research

⁵Boston College