Decoding the origin of the newly discovered Ag-Cu-(Ni-Co-As-Bi-Hg-U) ore shoots in Aouli Pb-Zn fault-fill veins (Morocco): insights from fluid inclusion microthermometry and copper and iron isotopes

MS. KHADRA ZAID, PHD¹, MOHAMMED BOUABDELLAH^{1,2}, MR. MOHAMED IDBAROUD³, GILLES LEVRESSE⁴, RYAN MATHUR⁵, MAX FRENZEL⁶, HASSAN BOUZAHZAH⁷, JOHAN YANS⁸, LAKHLIFA BENAISSI⁹ AND SAÏD BELKACIM^{10,11}

¹Laboratoire des Gîtes Minéraux, Hydrogéologie & Environnement, Faculté des Sciences, Oujda 60000, Morocco ²Geology and Sustainable Mining Institute, Mohammed VI Polytechnic University, Benguerir 43150, Morocco ³Department of Geology, Cadi Ayyad University, B.P. 2390, 40000, Marrakech

⁴Programa de Geofluidos, Centro de Geociencias UNAM-Campus Juriquilla, AP 1-253, Querétaro Mexico CP 76230

⁵Juniata College, Huntingdon, USA

⁶Helmholtz-Zentrum Dresden-Rossendorf, Institute Freiberg for Resource Technology

⁷GeMMe-Mineral Processing and Recycling, University of Liège, Allée de la Découverte 9, Sart Tilman, 4000 Liège, Belgium

⁸Institute of Life-Earth-Environment (ILEE), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium

⁹Laboratory of Georgesources, Department of Georgiances

⁹Laboratory of Georessources, Department of Geosciences, Faculty of Sciences and Technics, Moulay Ismail University, Errachidia 52000, Morocco

LAGAGE, Faculty of Sciences, Ibn Zohr University
 IRME, University of Quebec in Abitibi-Temiscamingue

This contribution provides the first microthermometric measurements along with Cu and Fe isotope data for the newly discovered Ag-Cu-(Ni-Co-As-Bi-Hg-U) ore shoots in the Aouli Pb-Zn fault-fill veins to further constrain metal sources, flow paths and redox processes that governed the formation of these ore shoots. The Aouli deposit is amongst the top three largest argentiferous Pb-Zn vein-type producers of Morocco, with significant Ag output averaging 350 g/t. The orefield consists of subparallel, open-space fillings of mostly ENE-WSW, WNW-ESE, and E-W trans-tensional steeply dipping veins, veinlets, and en echelon tension gashes and breccia veins. Besides the early Pb-Zn stage I, an unusual "five elements" hydrothermal stage II is recognized. In this latter stage, polymetallic mineralization occurs as patchy and discontinuous ore shoots with the ore mineralogy comprising a complex sequence of native metals (i.e., Ag and Bi), Ni-Co-Fe arsenides, Ag-As-Sb sulfides, and sulfosalts, set in a matrix of quartz, fluorite, and barite. Fluid inclusion microthermometry shows that the oreforming fluids correspond to evolved NaCl-CaCl₂ basin-derived

hot (50-180°C), saline fluids with total salinities varying in a wide range from 4.2 to 23.7 wt.% equiv. (CaCl₂ + NaCl). The homogenization temperatures are consistent with the formation temperature estimated from the **GGIMFis** geothermometer. Moreover, copper and iron isotope compositions of chalcopyrite separate show large variations in δ^{65} Cu and δ^{56} Fe ranging from -2.32 to 1.51% δ^{65} Cu with a mean value of 0.02% (\pm 1.00% 2 σ , n = 14) and from -0.24 to 2.03% δ^{56} Fe averaging 0.64% (\pm 0.68% 2σ , n = 9). Remarkably, the distribution of the δ^{65} Cu vs. δ^{56} Fe values shows a distinct positive correlation which is interpreted as a mixing trend. Collectively, the combination of fluid microthermometry and copper and iron isotope data suggests that the Aouli Ag-Cu-(Ni-Co-As-Bi-Hg-U) ore precipitated from mixing and subsequent redox processes between two Ca-Na-rich and Na-only rich saline fluids of ca. 19 wt.% equiv. NaCl and low-salinity meteoric fluid.