Late Paleoproterozoic granite magmatism in the south-central Sandmata Complex, Aravalli Craton (NW India): structures, geochronology and tectonic implications

 ${f MANISHA~SAHU}^1$, ANWESA BANERJEE 1 , NATHAN COGNÉ 2 , ELISABETTA MARIANI 3 AND PRABHAKAR NARAGA 1

¹Indian Institute of Technology Bombay ²Université de Rennes, CNRS, Géosciences Rennes – UMR 6118, F-35000, Rennes, France ³University of Liverpool

The Sandmata Complex in the Aravalli Craton (NW India) is regarded as a reworked crustal terrane, which recorded Paleoproterozoic (1.8-1.7 Ga) granulite facies metamorphism and extensive granitoid magmatism, temporally associated with the Aravalli Basin closure and therefore critical for understanding its tectono-magmatic evolution. The present study emphasizes on the 1.8-1.7 Ga granite magmatism, represented by the Amet pluton. These granitoids recorded three stages of deformation (D₁, D₂ and D₃). Early foliation (S₁) is indicated by gently dipping mylonitic fabric (10°-50°). The steeply dipping (>65°) mylonitic fabric with strike values of N35°-N75° defines the S₂ mylonitic foliation, whereas the N350°-N20° striking and steep dipping (>70°) ultramylonitic fabric characterizes the S₃ foliation in the granitoids. The folds on S₁ are upright folds, gently plunging towards NE or SW due to the F₁-F₂ event and NNE or SSW due to the F₁-F₃ event. The reclined folds developed on S₂ layers are steeply plunging towards N or S due to F₂-F₃ event. Kinematic vorticity analysis suggests that S₁ has (60.5-71.5)% pure shear component and S₂ has (43.5-49.5)%pure shear component. The quartz CPO results suggest a SW movement direction during S₁ and NW during S₂ and S₃ with low-T basal slip in c-plane along a-direction. The new in-situ zircon-monazite ages show distinct age populations at 2.4 Ga, 1.95-1.90 Ga, 1.85-1.70 Ga and 1.0-0.9 Ga. The 2.4 Ga and 1.95-1.90 Ga ages indicate the inherited protolith ages. The 1.85-1.75 Ga age characterizes the crystallization age and the timing of garnet growth and early mylonitization event (D_1) . The 1.0-0.9 Ga age population is attributed to the onset of Delhi Orogeny and associated mylonitization (D₂ and D₃) events. This study suggest that the south-central part of the Sandmata Complex witnessed felsic magmatism over a span of ~150 Ma, likely driven by the partial melting of thickened continental crust, the fractionation of mantle-derived mafic magmas, or a combination of both processes. Therefore, the Sandmata Complex records prolonged amalgamation history by preserving Late Paleoproterozoic (Aravalli Orogeny) and Neoproterozic (South Delhi Orogeny) orogenic episodes.