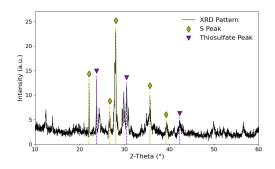
Aqueous oxidation of sulfide by chlorate: Implications for native sulfur formation on Mars

JIAWEI WANG AND NICOLE M. FERNANDEZ


Cornell University

The recent discovery of elemental sulfur by NASA's Curiosity rover in Gale Crater has sparked significant interest in its formation pathways and implications for the Martian sulfur cycle [1, 2]. Since Gale Crater lacks evidence of volcanism, previous studies proposed that native sulfur could result from the oxidation of clathrate-derived H₂S by SO₂ near surface[2]. However, the large SO₂ flux required to produce such extensive native sulfur deposits (~107–108 kg, [1]) seems unlikely due to its rapid photo-oxidation in the atmosphere. At the same time, experimental studies have demonstrated that chlorate (ClO₃-), which is abundant and relatively stable on Mars [3], can oxidize sulfide minerals to produce both elemental sulfur and sulfate [4]. This suggests that aqueous oxidation of H₂S by chlorate may have contributed to native sulfur formation in Gale Crater, offering new insights into the coupled S-Cl cycle on Mars. Despite its potential significance, the kinetics of this process under Mars-relevant conditions remain poorly constrained, with prior studies providing only qualitative insights.

To address this knowledge gap, we conducted a series of anaerobic batch experiments by reacting chlorate- and sulfidecontaining fluids under variable conditions (pH = 1-5, 4-90°C), with oxidizing potential controlled by initial ClO₃- concentration. Some experiments included Fe(II) to assess its catalytic effects. To replicate the observed coexistence of Ca-sulfate and elemental sulfur on Mars [2], some experiments are conducted with addition of Ca²⁺. Preliminary results showed rapid formation of elemental sulfur via chlorate-driven sulfide oxidation under acidic condition. The solution became milky immediately after acidification. The particles generated went through coarsening and precipitation within 1 day. XRD pattern of the light-yellow particles demonstrated the formation of elemental sulfur and thiosulfate through oxidation. Analysis of the reaction fluid with ion chromatography indicated significant SO₄² production. These findings suggest that chlorate-driven oxidation is a potetnially important pathway of native sulfur and sulfate formation on Mars.

Reference

- [1] Berger et al. (2025), 56th LPSC
- [2] King et al. (2025), 56th LPSC
- [3] Glavin et al. (2013), J. Geophys. Res. Planets, 118, 1955– 1973
- [4] Mitra et al. (2023), Earth and Planetary Science Letters, 624: 118464.

