Sulphur species and gold transport agents in magmatic fluids unveiled

STEFAN FARSANG AND ZOLTAN ZAJACZ

University of Geneva

Magmatic fluids exsolving from arc-related calc-alkaline magmas play an important role in the transport of volatile species and metals toward the Earth's surface and the formation of magmatic-hydrothermal ore deposits, including giant porphyry Cu-Mo-Au deposits and epithermal Au-Ag-Cu deposits. It is now well-established that chlorine- and sulphur-bearing complexes transport much of the metal content in high-temperature magmatic fluids. Which exact sulphur species transport metals in these fluids, however, remains highly debated.

To study the speciation of sulphur at a range of temperature and redox conditions characteristic of shallow magmatic degassing and to identify which sulphur species may be responsible for the transport of gold, we applied a three-step procedure. In step one, we trapped pre-equilibrated goldsaturated sulphur-bearing aqueous fluids (initial composition: H₂O + 1 mol NaCl/kg H₂O + 5 mol% H₂SO₄) as synthetic fluid inclusions (SFI) in quartz at 200 MPa and 750-1000°C using a prototype externally heated molybdenum-hafnium carbide vessel apparatus. In step two, we reheated the SFI to their entrapment temperature in a microscope heating stage and analysed them by in situ Raman spectroscopy with carefully chosen laser wavelengths to prevent the signal enhancement of sulphur radical species by Raman resonance. Finally, we employed LA-ICP-MS to determine the concentration of gold in the SFI, and thus constrain gold solubility in the experimental fluids.

Our experimental design allowed for the quantification of different sulphur-bearing aqueous species, including sulphide, SO_2 and sulphur radical species, at previously inaccessible temperature and oxygen fugacity conditions [1]. We show that sulphur radicals are stable at a wide range of temperature and redox conditions; however, their concentration remains below the detection limit in their respective non-resonant Raman spectra. The measured gold concentrations are generally very high and show a remarkable $\sim\!1$ log unit increase with decreasing oxygen fugacity from $129\pm52~\mu\text{g/g}$ at NNO+2.6 to $1,420\pm360~\mu\text{g/g}$ at NNO-0.9. Our observations suggest that HS $^-$ rather than sulphur radical species are the primary carriers of gold in magmatic fluids.

[1] Farsang & Zajacz (2025), Nature Geoscience 18, 98-104.