Polybaric differentiation for arc magma genesis: a perspective from alumina saturation index

PENG GAO¹, MARCOS GARCÍA-ARIAS², LONG CHEN³, HUA XIANG⁴, HAI-OU GU⁵ AND ZI-FU ZHAO¹

The crustal level at which arc magma differentiation predominantly occurs remains a subject of debate. Experimental petrology has demonstrated that the SiO2-ASI (alumina saturation index) relationship of arc magmas could address this issue because it strongly depends on pressure, but these results are far from conclusive due to either insufficient evaluation or inconsistency with geological observations. Using compiled data from arc volcanics and crystallization experiments, this study classifies the arcs as thick (40-63 km), normal (25-35 km) and thin (15-20 km) according to crustal thickness. We find that experimental melts produced at the corresponding arc root pressures can only account for the most aluminous compositions at intermediate SiO₂ content (55-65 wt%), with the typical lesser aluminous compositions requiring lower pressure crystallization. Phase equilibrium modeling is further used to model the crystallization processes from primitive arc rocks on different modes (isobaric and polybaric, equilibrium and fractional). Modeled results verify the experimental findings and highlight that the liquid lines of descent (LLD) from 0.2 GPa overlap the lesser aluminous parts of the SiO₂-ASI plots for arc rocks. LLD from H₂O-poor systems are deviated to lower ASI at constant SiO₂ relative to the H₂O-rich ones. The dominant phase to increase melt ASI is clinopyroxene, whereas garnet at highpressure and plagioclase at low-pressure (especially H₂O-poor) play an opposite role. This study underscores that polybaric differentiation is more relevant to the genesis of arc volcanics than deep crustal differentiation, irrespective of crustal thickness.

¹University of Science and Technology of China, Hefei

²Universidad de Salamanca

³Ocean University of China

⁴State Key Laboratory of Deep Earth and Mineral Exploration, Institute of Geology, Chinese Academy of Geological Sciences ⁵Hefei University of Technology