Metallogenic evolution and exploration strategies for alkaline volcanic rocks hosting the world-class Spor Mountain Be deposit, Utah, USA

NORA K. FOLEY, ROBERT A. AYUSO, JOHN JACKSON, RANI INDELA AND DAMON BICKERSTAFF

United States Geological Survey

Virtually all global beryllium (Be) supplies are obtained from a single world-class volcanic-hosted Be-(F-Li-REE-U) deposit located at Spor Mountain, Utah, USA. Unique properties of Be make it critical to international energy portfolios; for example, Be is a key element in high-performance components used in both oil and gas industries and in emerging energy sources due to its high thermal conductivity and tensile strength. Providing a broader understanding of the genesis of Spor Mountain is critical for evaluating regional and global exploration strategies for additional deposits of the volcanogenic Be type.

The deposit occurs in lithic-rich, base-surge deposits of the Spor Mountain Formation (SMF), which is part of an extensive sequence of Oligocene to Miocene calc-alkaline to alkalic tuffs and lavas. New U-Pb SHRIMP zircon ages (n=37) and geochemistry for regionally distributed volcanics and granites yield a range from ca. 37 Ma to 5 Ma (overlapping the U-Pb SHRIMP zircon age of SMF) and establish the temporal and metallogenic evolution from calc-alkaline to alkaline volcanism amid the transition from convergent to extensional tectonic regimes. Key attributes of SMF include a magmatic Be-U-F enrichment stage from melting of continental lithosphere and later hydrothermal/metasomatic Be-enrichment stages. The SMF shows evidence of prolonged fractional crystallization (e.g., large Eu anomalies) and pervasive hydrothermal alteration by F-rich aqueous fluids. A shared source and evolution for the SMF rhyolite and tuff are indicated by (1) regular, stacked subparallel, chondrite-normalized REE patterns, (2) overlapping sub-vertical arrays for Pb isotopes (207Pb/204Pb ~15.60-15.70 at 206Pb/204Pb \sim 18.60), and (3) negative values of e_{Nd} (average \sim -8.0). The SMF occurs near the boundary between crustal domains. Crustal ages from Nd isotopes (average $T_{DM} \sim 2.2$ Ga) are older than basement ages obtained by Pb isotopes. Rare-metal indices of graniterelated mineralization (e.g., Nb/Ta, Zr/Hf) show SMF values overlap fields for globally distributed granitic/rhyolitic Be deposits, for example, Ermakovka F-Be (Russia) and Baiyanghe Be-U (China); however, none of these deposits are known to match the mineralogy, rare metal chemistry, nor the unique geologic setting of the Spor Mountain system.