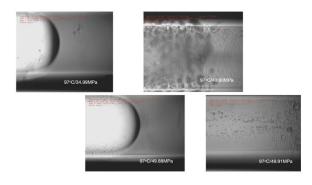
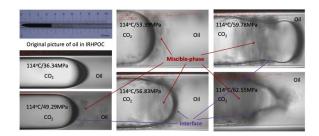
Laboratory Investigation of the Interaction Between CO₂ and Reservoir Fluids During the CCUS Process Using the IRHPOC Method

MR. JERRY YEOH, MA


PES Enterprise Australia Pty Ltd


The High-Pressure Optical Cell (HPOC) is an innovative and powerful tool for studying Carbon Capture and Storage (CCS). However, its application in CO₂-driven Enhanced Oil Recovery (EOR) within the Carbon Capture, Utilization, and Storage (CCUS) process is limited due to the dark color of reservoir fluids and strong fluorescence, which interfere with optical measurements.

To overcome these challenges, the Infrared High-Pressure Optical Cell (IRHPOC) integrates infrared imaging with high-pressure optical cell technology, enabling real-time visualization of CO₂ interactions with reservoir fluids.

In this study, an oil sample from the Karamay oilfield in China was injected into an HPOC, which was connected to an automatic pump for precise pressure control. The HPOC was placed on a capillary stage for temperature regulation and examined using an infrared imaging microscope. Figure 1 illustrates the CO₂-oil interaction process as pressure increases under reservoir temperature conditions, clearly capturing the miscible process at different pressure levels. Additionally, the reverse process highlights phase changes during pressure reduction.

To further investigate the effect of chemical additives, two additional oil samples with additives were analyzed using the same method. Figure 2 compares these results with untreated oil, demonstrating that chemical additives enhance CO₂ interactions with reservoir fluids. This finding is further supported by slimtube and PVT experiments, which show that chemical additives improve CO₂ solubility in oil, lower the minimum miscibility pressure (MMP), and reduce the bubble point pressure.

