How did phosphorus cycling shape oxygen and early animal evolution in the Ediacaran?

MATTHEW DODD¹, WEI SHI², CHAO LI³, ZIHU ZHANG⁴, MENG CHENG⁴, HAODONG GU⁵, DALTON HARDISTY⁶, SEAN LOYD⁷, MALCOLM WALLACE⁸, ASHLEIGH VAN SMEERDIJK HOOD⁸, KELSEY LAMOTHE⁹, BENJAMIN J. W. MILLS¹⁰, SIMON W. POULTON¹¹ AND TIMOTHY W. LYONS¹²

Phosphorus is a limiting nutrient that is thought to control oceanic oxygen levels to a large extent. A possible increase in marine phosphorus concentrations during the Ediacaran Period (~635-539 Myr) has been proposed as a driver for increasing oxygen levels. Little is known, however, about the nature and evolution of phosphorus cycling during this time. To address this we applied the carbonate-associated phosphate (CAP) proxy to six globally-distributed sections to reconstruct oceanic phosphorous concentrations during a large negative carbon isotope excursion - the Shuram Excursion (SE), which cooccurred with global oceanic oxygenation. Using a quantitative biogeochemical model our CAP data suggest equivalent ocean phosphorus concentrations under maximum and minimum extents of ocean anoxia across the SE. This observation may reflect decoupled phosphorus and ocean anoxia cycles, as opposed to their coupled nature in the modern ocean. Our findings point to external stimuli such as weathering events rather than internal oceanic phosphorus-oxygen cycling alone as a control on oceanic oxygenation in the Ediacaran, which in turn may help explain the prolonged rise of atmospheric oxygen levels across the Precambrian.

¹University of Western Australia

²Chengdu University of technology

³Institute of Sedimentary Geology, Chengdu University of Technology

⁴State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, Sichuan, China

⁵China University of Geoscience, Wuhan

⁶Michigan State University

⁷California State Fullerton

⁸The University of Melbourne

⁹University of Melbourne

¹⁰University of Leeds

¹¹School of Earth and Environment, University of Leeds

¹²University of California, Riverside