A non-methanogenic archaeon within the order *Methanocellales* in highly reduced serpentinized setting

 SHINO SUZUKI¹, SHUNICHI ISHII², GRAYSON L. CHADWICK³, ATSUSHI KOZUMA⁴, KAZUYA
 WATANABE⁴, FUMIO INAGAKI⁵, MADS ALBERTSEN⁶, PER H. NIELSEN⁶ AND KENNETH NEALSON⁷

¹RIKEN
²JAMSTEC
³University of California, Berkeley
⁴Tokyo University of Pharmacy and Life Sciences
⁵JAMSTEC – Japan Agency for Marine-Earth Sciences and Technology
⁶Aalborg University
⁷University of Southern California
Presenting Author: shino.suzuki@riken.jp

Methanogenesis and acetogenesis via acetyl-CoA pathway have been proposed as the earliest metabolic inventions of life, energy metabolism and carbon providing fixation. Serpentinization, a geochemical process found on modern and ancient Earth, provides ultra-reducing environment that could support these metabolic functions. Here, we circularized genome of Met12, an archaeon in the order Methanocellales detected from serpentinized springs in The Cedars, California, and revealed it to be the first member of the traditional methanogenic orders that have an acetyl-CoA pathway but lack essential genes for methanogenesis including the methyl-coenzyme M reductase, heterodisulfide reductases and hydrogenases. In situ transcriptomic analyses identified high expression of a multiheme c-type cytochrome and the heterologous expression demonstrated that this cytochrome is capable of accepting electrons but not donating. All these indicated that Met12 is a CO₂-reducing electron-fueled acetogen without electron bifurcation, which possibly represents a trace of primordial carbon fixation before the advent of archaeal methane metabolism.

