Phase- and facies-specific carbon, clumped, and calcium isotopes of the Kinderhookian-Osagean Boundary Excursion

NOAH T ANDERSON¹, MATTHEW BRAUN², ELIZABETH M. GRIFFITH³, MATTHEW R SALTZMAN² AND KRISTIN BERGMANN¹

¹Massachusetts Institute of Technology
²Ohio State University
³The Ohio State University

Presenting Author: nanderso@mit.edu

The Kinderhookian-Osagean Boundary Excursion (KOBE) is one of the largest positive carbon isotope excursions in the Phanerozoic. Possible end-member interpretations of these and other Paleozoic positive carbon isotope excursions include burial diagenesis, meteoric diagenesis associated with global sea level fall, phase-specific isotope effects, local to platform-scale variations in the d¹³C of DIC, or increased carbon burial. Exceptionally preserved carbonates from the Early Mississippian Gilmore City Formation in north-central Iowa provide an opportunity to integrate facies analyses, petrography, and geochemistry of the excursion interval.

The top several meters of both cores exhibit depleted d¹³C, fluid d¹⁸O, and d^{44/40}Ca compositions, elevated manganese concentrations, and vertical calcite-filled fractures, all consistent with meteoric diagenesis. Below this, however, mineral d¹⁸O does not increase alongside changes in D₄₇, evincing sediment-buffered diagenesis in lower portions of the core. Low clumped isotope (D₄₇) temperatures (median = 32°C), seawater-like fluid d¹⁸O values (median = -1.3‰), and preservation of original carbonate fabrics at the petrographic scale all suggest that carbonates faithfully record the onset and main phase of the KOBE. TD₄₇ and d¹⁸O data from sediment-buffered intervals show 3–5°C cooling associated with the positive d¹³C excursion of ~3 ‰ in these sections.

We do not observe a strong dependence of $d^{13}C$ composition on facies in our measured sections. The peloidal to fossiliferous grainstone facies that carries the peak of the KOBE is also present above and below the excursion; algal cortoids are present at the peak of the excursion (~6‰) as well as on the falling limb (~3‰). Trends in $d^{13}C$ persist across parasequence boundaries with only minor shifts, indicating a subordinate role for facies changes in the overall excursion.

Phase-specific isotope analyses of crinoid ossicles, most abundant during the excursion peak, show a median +0.8‰ d¹³C offset (maximum +1.7‰) from coeval bulk carbonate. Pointcounting of thin sections shows that crinoids comprise no more than 60% of fossiliferous grainstones; thus, we estimate the maximum effect of elevated crinoid d¹³C to be ~0.5‰. Preliminary measurements of crinoids, rugose corals, and brachiopods tend to have cooler D₄₇ temperatures and limited to