Deep recycling of nitrogen to the plume mantle sources: Insights from plume-ridge interaction at Reykjanes Ridge to plume-slab interaction at Rochambeau Bank

KAN LI¹, MICHAEL R HUDAK², PETER H BARRY¹, MICHAEL W BROADLEY¹, MOLLY K ANDERSON¹, JOHN A KRANTZ¹, DAVID V BEKAERT³, JOSHUA CURTICE¹ AND MARK D KURZ¹

¹Woods Hole Oceanographic Institution
²Williams College
³CRPG - Université de Lorraine
Presenting Author: kan3@ualberta.ca

The question of how efficiently N can be subducted into Earth's mantle is a hotly debated subject in the geochemical community [1,2]. Nitrogen isotope systematics of mantle-plume influenced materials provide a unique opportunity to better constrain Earth's deep N cycle. Here, we present new N isotope data for two suites of high ³He/⁴He, plume-influenced basaltic glasses from Reykjanes Ridge (RR; up to 18 R_A; R_A is the atmospheric ³He/⁴He ratio of 1.4×10⁻⁶) in Iceland and Rochambeau Bank (RB; up to 23 R_A) at the Lau Back-arc Basin. Our results show that RR (-2.2% to +0.1%) and RB (-0.1% to +2.8‰) samples are all characterized by δ^{15} N values (where δ^{15} N $= \left[\left(\frac{15}{N^{14}} \frac{N^{14}}{N^{14}} \frac{N^{14}}{N^{14}} \right) \frac{15}{N^{14}} \frac{N^{14}}{N^{14}} \frac{N^{14$ greater than the depleted mantle (i.e., DM; -5±2‰). Additionally, we employ the (La/Sm)_N/(Ba/Nb) ratio as an index for the relative contributions of plume and subduction components. We find a negative correlation between $(La/Sm)_{N}/(Ba/Nb)$ and $\delta^{15}N$ values for RB samples, suggesting the existence of both a Samoan plume component and a subduction component - likely from the Pacific slab subducting in Tonga - in the RB mantle source. The subduction component likely has a higher $\delta^{15}N$ value than the plume component. Threeendmember mixing between air, DM and plume component indicates a contribution from a plume component with a $\delta^{15}N$ of ~+1‰, which is consistent with the range of δ^{15} N values (~0‰ to ~+6‰) observed in Iceland [3]. Notably, RB sample D9-9 appears to be heavily influenced by N from a component with a δ^{15} N value of ~+6‰ and extremely low (La/Sm)_N/(Ba/Nb), compatible with a subduction origin. Further the ³He-rich plume sources for RR and RB samples are characterized by positive $\delta^{15}N$ values. Combined with elevated $N_2/{}^{3}He$ ratios relative to DM, these new N isotope data consistently indicate the subduction of ¹⁵N-rich surficial material into Earth's deep mantle. The combination of high ³He/⁴He ratios and the inferred subduction influences on N of plume sources can be reconciled with large variability of $N_2/{}^3$ He ratios in the source endmembers.

[1] Labidi, 2022. [2] Bekaert et al., 2020. [3] Halldórsson et al. 2016.