Enhancing Low-Temperature Hydrogen Production from Peridotites Using Electrical Reservoir Stimulation

JACOB NEWMARK¹, **VIKAS AGRAWAL**¹, ALEXIS S. TEMPLETON^{1,2}, JONAS TOUPAL¹, ALI TAROKH¹, LUCAS MEJIA¹ AND RAFAEL VILLAMOR-LORA¹

¹Eden GeoPower Inc.

²University of Colorado, Boulder

Presenting Author: vikas.agrawal@edengeopower.com

With increasing demand for hydrogen (H₂) in the industrial and clean energy sectors, geologic H₂ has become a source of interest for its potential as an untapped carbon-free energy resource. Much of this current effort focuses on recovery of natural H₂ produced through processes that include mafic and ultramafic serpentinization reactions, Fe(II)-bearing mineral oxidation, and water radiolysis [1-3]. Stimulating geological formations to generate H2 by promoting serpentinization reactions of FeO-rich minerals by increasing the reactive surface area of these minerals provides a new avenue for accelerating geologic H₂ generation. A primary target for stimulated H₂ includes peridotites such as those of the Samail Ophiolite in Oman where analyses of deep hyperalkaline Ca⁺²-OH groundwaters have detected µmol to mmol L⁻¹ concentrations of dissolved H₂ [4]. Estimates suggest that peridotite rocks have the potential to produce 2-4 kg H₂ m⁻³ when completely oxidized, indiciating a significant potential for H₂ production and orders of magnitude above stimulation of other mafic rock types, such as basalt [5]. However, subsurface reservoirs are limited by existing permeability for promoting serpentinization processes. Eden's Electrical Reservoir Stimulation (ERS) technology provides a unique solution to enhance stimulated H₂ potential by increasing the permeability, surface area, and temperature of water/rock reactions.

In this study, we are conducting core scale experiments on peridotite from the Samail Ophiolite, replicating *in-situ* geologic conditions as well as different P-T conditions, to demonstrate the impact of ERS on the rates and extents of rock hydration and H_2 generation. Water/rock reactions are analyzed by characterizing the changes in rock properties, pore fluid chemistry, pH, conductivity, and amount of H_2 generated for optimized stimulation methods. Our research holds promise for unlocking the vast potential of geologic H_2 as a significant contributor to the transition toward a cleaner and more sustainable energy future.

 Truche et al., (2018) Earth Planet. Sci. Lett. 493, 186-197.
Geymond et al., (2023) Front. Earth Sci. 11. [3] Templeton et al., (2024) Front. Geochem. 2. [4] Nothaft et al., (2021) J. Geophys. Res.: Biogeosci. 126. [5] Osselin et al. (2021) Nat. Geosci. 15, 765-769.