Potassium and rubidium isotopic composition of Icelandic basalts: implications for mantle processes

HEINI MERRILL¹, BAOLIANG WANG², WEI DAI³, SÆMUNDUR A. HALLDÓRSSON¹, SIMON MATTHEWS¹, ENIKŐ BALI¹ AND FRÉDÉRIC MOYNIER⁴

¹Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland

²Université Paris Cité, Institut de Physique du Globe de Paris, CNRS UMR 7154

³Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, France

⁴Université Paris Cité, Institut de Physique du Globe de Paris, CNRS

Presenting Author: heh123@hi.is

Both K and Rb are incompatible in magmatic processes but are fluid mobile in low temperature crustal processes. Previous studies show that K and Rb isotopes are subject to limited fractionation during igneous processes and magmatic evolution^{1,2}, thus any resolvable variability in d⁴¹K and d⁸⁷Rb composition likely indicates heterogeneities in source. Recent advances in the analytical methods capable in producing high precision d⁴¹K and d⁸⁷Rb data have enabled us to evaluate possible mantle-controls on these systems.

We present K and Rb isotope data for a suite of Icelandic basalts (n=31) measured with MC-ICP-MS equipped with a collision cell (Sapphire by Nu Instruments). Our sample set includes well-characterised and largely primitive basalts from all active rift-zones, two off-rift alkalic volcanic zones as well as from a series of samples from a series of eruptions at Fagradalsfjall (2021-2023) where a clear mantle control has been identified³. The aim of this study is to characterise d⁴¹K and d⁸⁷Rb values of Icelandic basalts as well as to test possible mantle control on d⁴¹K and d⁸⁷Rb values.

Measured values fall close to estimated mantle average for both isotope systems, $d^{41}K = -0.42 \pm 0.08\% (2SD)^1$ and $d^{87}Rb = 0.12 \pm 0.08\% (2SD)^2$, whereas some samples extend to more positive $d^{87}Rb$ values (up to 0.02‰). No resolvable variation was measured within the Fagradalsfjall samples. In comparison with $d^{41}K$ and $d^{87}Rb$ values measured in the Hekla rock suite (basalt to rhyolites)^{2,4} we note that some of our samples extend towards more positive values. Considering our entire data set from rift to off-rift volcanic zones, weak – yet noticeable – correlation of $d^{41}K$ and $d^{87}Rb$ with tracers such as La/Sm and ${}^{87}Sr/{}^{86}Sr$ commonly used to detect mantle-derived variability suggests a mantle control on both $d^{41}K$ and $d^{87}Rb$. The endmembers of our data set are analytically resolvable from each other for both $d^{41}K$ and $d^{87}Rb$, therefore it is likely that the mantle beneath Iceland has heterogenous $d^{41}K$ and $d^{87}Rb$.

References:

[1] Hu et al. (2021), JGR Solid Earth 126

[2] Wang et al. (2023), GCA 354

[4] Tuller-Ross et al. (2019), Chem. Geol. 525