Isotopes in the outer solar system as tracers of volatile origin and evolution

KATHLEEN MANDT¹, JACOB LUSTIG-YAEGER², DENNIS BODEWITS³, STEPHEN FUSELIER⁴, ADRIENN LUSPAY-KUTI², OLIVIER MOUSIS⁵, KARLHEINZ TRATTNER⁶ AND PETER WURZ⁷

¹NASA Goddard Space Flight Center
²Johns Hopkins Applied Physics Laboratory
³Auburn University
⁴Southwest Research Institute
⁵Origins Institut, LAM, Aix Marseille University
⁶LASP, CU
⁷University of Bern

Presenting Author: kathleen.mandt@nasa.gov

Comparative planetology using isotope geochemistry has played a critical role in understanding processes at work in and of the history of outer Solar System bodies [see 1, and references therein]. The ¹²C/¹³C measured in methane on Titan has enabled us to determine the maximum length of time that methane has been present in the atmosphere [2,3], showing that methane has not been present in Titan's atmosphere throughout the history of the solar system and is limited to no more than 1 billion years (Gyr) [3]. Observations of ${}^{14}N/{}^{15}N$ in HCN and N₂ in the atmosphere of Titan provides direct evidence of how photochemistry influences stable isotopes [5,6] and helped us to determine that Titan's nitrogen originated as NH₃ in the protosolar nebula [7]. The lower limit observed for ¹⁴N/¹⁵N in HCN in Pluto's atmosphere [8] provides a valuable tool for determining the origin of nitrogen for Pluto [9] for which work is ongoing. Finally, D/H in solar system atmospheres and icy remnants of planet formation provides a powerful tool for mapping solar system ice composition and atmosphere evolution. We have conducted a thorough re-analysis of D/H and oxygen made by isotope measurements Rosetta at comet 67P/Churyumov-Gerasimenko evaluating fractionation processes on the surface and in the coma of comets that have implications for interpreting cometary D/H measurements.

Mandt K. E. et al. (2015a) SSRv, 197, 297–342. [2] Mandt K. E. et al., (2009) PSS, 57, 1917–1930. [3] Mandt K. E. et al., (2012) ApJ, 749, 160. [4] Lorenz, R. D. et al. (2008). GRL, 35(2), L02206. [5] Liang et al. (2007) ApJL, 664, L115-L118. [6] Mandt et al. (2012b) JGR, 117, E10006. [7] Mandt K. E. et al., (2014) ApJL, 788, L24. [8] Lellouch et al. (2017) Icarus, 286, 289-307. [9] Mandt et al. (2017) MNRAS, 472, 118-128. [10] Mandt et al. (in review) Science Advances.