In-situ dating of black shales with the Re-Os geochronometer using LA-ICP-MS / MS

JAY M. THOMPSON¹, POUL EMSBO², KATE SOUDERS³, STIJN GLORIE⁴, ALEXANDER SIMPSON⁵ AND SARAH GILBERT⁴

 ¹U.S. Geological Survey, Geology, Geophysics, and Geochemistry Science Center
²U.S. Geological Survey, Denver
³US Geological Survey
⁴University of Adelaide
⁵British Geological Survey
Presenting Author: jmthompson@usgs.gov

The Re-Os geochronometer is widely used to date Re-rich phases such as molybdenite and organic-rich shales. Conventional Re-Os ID-TIMS isotopic analysis can produce accurate results but requires specialized and labor-intensive chemistry to fully digest and extract all Os from the sample. The amount of material required for ID-TIMS necessitates bulk sampling and a loss of spatial resolution; potentially losing spatial context Re and Os host phases. Recent advances in ICP-MS/MS technology allow the chemical separation of parent ¹⁸⁷Re from daughter ¹⁸⁷Os using CH₄ reaction gas (Hogmalm et al., 2019). In-situ analysis with laser ablation ICP-MS/MS of Re-rich phases is possible at the 100 μ m or ~1.5 μ g scale.

Presented here are LA-ICP-MS/MS analyses using a combination of CH₄, He, and H₂ collision gases to chemically separate parent ¹⁸⁷Re from daughter ¹⁸⁷Os by mass shifting ¹⁸⁷Os to mass 201. Previous work by Hogmalm et al. (2019) demonstrated $\approx 2\%$ of ¹⁸⁷Re also reacts to mass 201, limiting analyses to Proterozoic and older molybdenite. Our new methodology lowers this residual ¹⁸⁷Re reaction to $\approx 0.4\%$: allowing younger samples to be accurately dated. Using this methodology, we present LA-ICP-MS/MS Re-Os analyses of Paleozoic black shales (e.g., Stark Shale) using the Moly Hill molybdenite as the primary calibration material. The results demonstrate Re-Os ages that are consistent with known stratigraphy. Precision of Re-Os ages is limited by the amount of radiogenic Os in a sample as well as the spread of data points along the isochron. For shales with ppm Re, the precision of the Re-Os age is similar to ID-TIMS. For shales with 10s to 100s of ppb Re, the precision is between 5% and 10% 2s. While counting statistics are lower than Re-Os isotopic measurements by ID-TIMS, the LA-ICP-MS/MS technique takes advantage of natural sample variability at the micro-scale to produce isochrons with significantly more variation in radiogenic to initial Os composition, therefore producing relatively precise Re-Os ages.

Hogmalm, K. J., Dahlgren, I., Fridolfsson, I., & Zack, T. (2019). First in situ Re-Os dating of molybdenite by LA-ICP-MS/MS. *Mineralium Deposita*, 54(6), 821-828. https://doi.org/10.1007/s00126-019-00889-1