Mg- and Ti-poor hibonites from CM2 chondrites: mass-dependent and massindependent isotope effects

XIN YANG^{1,2}, GARY R. HUSS³, KAZUHIDE NAGASHIMA³, JULIE M. KORSMEYER^{1,2,4}, ANDREW M. DAVIS^{1,2,5} AND PHILIPP R. HECK^{1,2}

¹Department of the Geophysical Sciences & Chicago Center for Cosmochemistry, The University of Chicago

²Robert A. Pritzker Center for Meteoritics and Polar Studies, Negaunee Integrative Research Center, Field Museum of Natural History

³Hawai'i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa

⁴Department of Chemistry, The University of Chicago

⁵Enrico Fermi Institute, The University of Chicago

Presenting Author: xinyoung@uchicago.edu

Hibonite (CaAl_{12-2x}Mg_xTi_xO₁₉) is one of the earliest condensates from a hot nebular gas of solar composition and stands out from other refractory phases due to its substantial nucleosynthetic isotopic anomalies in Ca and Ti and variations in O isotopes and the extinct radionuclide ²⁶Al [1-3]. Hibonite show variations in mineral chemistry dominated by the substitution of $Ti^{3+} \leftrightarrow Al^{3+}$ and of $Ti^{4+} + Mg^{2+} \leftrightarrow 2Al^{3+}$. Most hibonite grains separated from meteorites have a few wt% Mg and Ti, causing the blue color under reducing conditions [1,3]. We extracted twenty-four hibonites from specimens of the Murchison and Aguas Zarcus CM2 chondrites from the Field Museum of Natural History [5]. Notably, nine of these grains have TiO₂ and MgO contents below our EDS detection limit of 0.1 wt%. The Mg- and Ti-poor grains are colorless due to the low abundance of Ti and all display large mass-dependent fractionation (MDF) of O isotopes [6]. Here we report the Ca and Ti isotopic composition of these twenty-four hibonites determined with the University of Hawai'i Cameca ims-1280 following an established method [7]. The colorless hibonites exhibit a large MDF of Ca with intrinsic fractionation F_{Ca} of ~10‰ amu⁻¹, while grains with more Mg and Ti show F_{Ca} of <4‰ amu⁻¹. The Mg- and Ti-poor hibonites have smaller Ca and Ti isotopic anomalies ($|\delta^{48}Ca| < 7\%$; $\delta^{50}Ti$ unresolvable) compared to the others ($|\delta^{48}Ca| > 50\%$; $|\delta^{50}Ti| > 40\%$). We suggest that the colorless grains experienced strong evaporation in the early solar nebula which resulted in the large MDF and loss of Mg and Ti.

MacPherson (2014) Treatise on Geochemistry 2nd Ed.
1:139–179. [2] Davis A. M. and Richter F. M. (2014) Treatise on Geochemistry 2nd Ed. 1:335–360. [3] Kööp et al. (2016) GCA, 189, 70–95. [4] Berry A. J. et al. (2017) Chem. Geol., 466, 32–40. [5] Korsmeyer J. et al. in prep. [6] Yang et al. (2023) MetSoc, #6115. [7] Kööp et al. (2018) EPSL, 489, 179–190.