Reconstructing the carbon isotope composition of Phanerozoic atmospheric CO₂ using a Bayesian forward model

DUSTIN T HARPER¹, GABRIEL BOWEN¹, DANA ROYER², XIAOQING ZHANG², JIAWEI DA³, JON D RICHEY⁴, DAN BREECKER³, BARBEL HONISCH⁵ AND ISABEL P MONTAÑEZ⁴

¹University of Utah
²Wesleyan University
³The University of Texas at Austin
⁴University of California, Davis
⁵Lamont-Doherty Earth Observatory
Presenting Author: dustin.t.harper@utah.edu

Knowledge of the ratio of ¹³C to ¹²C in atmospheric CO₂ is required to reconstruct past atmospheric CO₂ concentrations (paleo-CO₂) using several widely applied proxy systems. For example, leaf-gas exchange models use the difference between leaf δ^{13} C and δ^{13} C_{CO2}, in conjunction with leaf morphological and physiological measurements, to estimate paleo-CO₂. The marine algal phytoplankton proxy system similarly leverages the sensitivity of carbon isotope fractionation between CO₂ and algae during photosynthesis (i.e., ϵ_p) to reconstruct paleo-CO₂. The paleosol carbonate proxy system is based on a mixing model that describes how δ^{13} C_{CO2} and δ^{13} C of soil-respired CO₂ affect soil carbonate δ^{13} C at different paleo-CO₂ levels.

Traditionally, $\delta^{13}C_{CO2}$ has been estimated from marine carbonate $\delta^{13}C$ ($\delta^{13}C_{carb}$), inverting the natural relationship in which $\delta^{13}C_{carb}$ is controlled by $\delta^{13}C_{CO2}$. Here we combine established theoretical frameworks for the Cenozoic[1] and Cretaceous[2] to forward model $\delta^{13}C_{carb}$ from $\delta^{13}C_{CO2}$, incorporating archive-specific isotope fractionation (e.g., vital effects in foraminifera and brachiopods) and effects related to ocean carbonate chemistry and sample diagenesis. We account for spatio-temporal variability in temperature (which affects the magnitude of the carbonate-CO₂ fractionation factor) using a proxy-based global mean surface temperature reconstruction and spatial relationships determined by a general circulation model[3] for the Phanerozoic. Our forward model is conditioned on a recently published compilation of Phanerozoic marine carbonate $\delta^{13}C[4]$ in a Bayesian hierarchical framework to generate a time series of posterior $\delta^{13}C_{\rm CO2}$ probability distributions. We evaluate the smoothing of our new $\delta^{13}C_{CO2}$ reconstruction using different time-binning approaches and compare our record to major paleoenvironmental and paleobiologic shifts documented over the past 500 Myr.

[1] Tipple et al. (2010), *Paleoceanography*. [2] Barral et al. (2017), *Palaeog., Palaeoclim., Palaeoecol.* [3] Valdes et al. (2021), *Clim. Past.* [4] Cramer & Jarvis (2020), *Geologic Timescale.*