Investigating the source of unusual kaolinite-spinel float rocks in Jezero crater, Mars, and their implications for Mars crustal processes.

CANDICE BEDFORD¹, CLEMENT ROYER², ROGER C. WIENS¹, JEFFREY R JOHNSON³, BRIONY H. N. HORGAN¹, ADRIAN BROZ¹, OLIVIER FORNI⁴, STEPHANIE CONNELL¹, LUCIA MANDON⁵, BAVANI KATHIR⁶, ELISABETH M. HAUSRATH⁷, ARYA UDRY⁸, JUAN MANUEL MADARIAGA⁹, ERWIN DEHOUCK¹⁰, RYAN ANDERSON¹¹, PIERRE BECK¹², OLIVIER BEYSSAC¹³, ELISE CLAVE¹⁴, SAM CLEGG¹⁵, EDWARD CLOUTIS¹⁶, THIERRY FOUCHET¹⁷, TRAVIS GABRIEL¹⁸, BRADLEY GARCZYNSKI⁶, ATHANASIOS KLIDARAS¹, HENRY MANELSKI¹, LISA E. MAYHEW¹⁹, JORGE NÚÑEZ³, ANN M OLLILA²⁰, SUSANNE SCHRÖDER²¹, JIM BELL²², JUSTIN I. SIMON²³, Z. URIAH WOLF²⁴, KATHRYN M. STACK²⁵, AGNES COUSIN⁴ AND SYLVESTRE MAURICE²⁶

¹Purdue University

²Laboratoire atmosphères, milieux, observations spatiales (LATMOS)

³JHU APL

⁴Institut de Recherche en Astrophysique et Planétologie (IRAP),Université de Toulouse 3 Paul Sabatier, CNRS, CNES
⁵California Institute of Technology
⁶Western Washington University
⁷4505 S MARYLAND PKWY
⁸University of Nevada Las Vegas
⁹UPV/EHU
¹⁰LGL-TPE (Univ. Lyon 1 / CNRS)

¹¹USGS (United States Geological Survey)

12 states deological survey)

¹²Institut de Planétologie et d'Astrophysique de Grenoble –

Université Grenoble Alpes - CNRS

¹³IMPMC, Sorbonne Université, CNRS UMR 7590, MNHN

¹⁴Deutsches Zentrum für Luft- und Raumfahrt

¹⁵LANL (Los Alamos National Laboratory)

- ¹⁶University of Winnipeg
- ¹⁷LESIA

¹⁸USGS

¹⁹University of Colorado - Boulder

²⁰LANL

²¹DLR-OS

²²Arizona State University

²³NASA Johnson Space Center

²⁴Los Alamos National Laboratory

²⁵JPL/Caltech

²⁶IRAP (Institut de Recherche en Astrophysique et Planétologie)

Presenting Author: cbedford@purdue.edu

Since Landing in Jezero crater, the Mars 2020 Perseverance

rover has encountered over 4,000 light-toned float rocks ("float") scattered across the dark-toned, mafic to ultramafic crater floor and volcaniclastic Jezero delta. To date (Sol ~1100), no outcrop of these light-toned float has been found. Here, we use imaging, chemical, and mineralogical data from the SuperCam and Mastcam-Z instruments onboard the *Perseverance* rover to constrain the potential origins of these unusual float.

Geochemical data acquired from the SuperCam laser induced breakdown spectrometer (LIBS) shows that these rocks are rich in Al_2O_3 (up to 44 wt%), with low abundances of MgO, FeO_T, CaO and Na₂O (averages <2 wt%) and an unusually high abundance of Ni, Cr, and Cu. Al_2O_3 abundances in these rocks are negatively correlated with SiO₂ and hydration. Mineralogical data provided by SuperCam Visible Near-Infrared spectrometer show that the main minerals present in these rocks are likely kaolinite (strong signature in one target) and spinel, with potential accessory sulfates, zeolites, Al-smectite/illite, and hydrated silica or alumina.

Kaolinite horizons overlying Fe/Mg smectite clay horizons have been detected in multiple places in the Jezero crater watershed suggesting that a possible formation mechanism for the high Al₂O₃ abundances and low MgO, FeO_T, CaO, and Na₂O, and the mineralogical observation of kaolinite could be due to pedogenic leaching in a warmer and wetter ancient Mars [1]. However, the low hydration observed by both LIBS and IR spectra in many of these targets suggests they are rich in metastable dehydroxylated metakaolinite. а kaolinite. Temperatures from 450-700°C are required to form metakaolinite [2]. Spinel is also known to form from high temperature metamorphism of Al-bearing rocks [e.g., 3]. Possible sources of heat in the Jezero crater watershed or crater rim include impact or volcanic processes. Due to the presence of a kaolinite-bearing megabreccia block and several detections of light-toned boulders on the Jezero crater rim in long-distance images, we suggest impact metamorphism of a kaolinite weathering horizon is the most likely source of these light-toned float.

[1] Ehlmann et al., 2009 https://doi.org/10.1029/2009JE003339

[2] Sperinck et al., 2011 https://doi.org/10.1039/C0JM01748E

[3] Wang et al., 2021 https://doi.org/10.1007/s00710-021-00743-1