Experimental study on dynamic porefracture evolution and multiphase flow in sandstone reservoirs

TONG ZHANG¹, MING TANG¹, LIANG YUAN¹, MINGCHAO WANG², YANFANG LI² AND XIN YANG²

¹Anhui University of Science and Technology ²Anhui university of Science and Technology Presenting Author: 1099731996@qq.com

The CO₂ mineralization in sandstone is directly related to the CO₂ spatial distribution and multiphase flow behaviors in complex pore structure. In this study, the dynamic evolution of pore-fracture induced by stress disturbance and CO₂ spatial distribution and migration were investigated by a self-developed online LF-NMR triaxial stress system, the T₂ spectrum, NMRI and volume strain were monitored. The results show that dynamic variation, obvious change, and slight response occurred at the macropore (MP>50ms), mesopore (5ms < PP < 50ms), and micropore (AP<5ms) with the increase of loading stress, and CO₂ storage is mainly distributed in mesopore and macropore. The pore-fracture successively experienced compression, expansion and coalescence, in which mesopore and macropore controls the microcrack initialization and connection. The permeability is negatively correlated with the heterogeneity of the pore-fracture structure, and is exponentially related to the total porosity dominated by macropore porosity. Longitudinal shear cracks are not conducive to the CO₂ mineralization, which is mainly composed by the microcracks. The thief channel occurred at the plastic stage about 70-90% peak strength, which is decremental to CO₂ mineralization. The findings provide significant insight into the optimized design of CO2 storage practice.