
⁸¹Kr dating of 1 kg Antarctic ice

ZHENG-TIAN LU¹, FLORIAN RITTERBUSCH¹, JIE WANG¹, XIN FENG¹, SARAH A SHACKLETON², EDWARD BROOK³, JOHN A HIGGINS², ZE-HUA JIA⁴, WEI JIANG¹, JEFFREY P SEVERINGHAUS⁵, LIANG-TING SUN⁴, GUO-MIN YANG¹ AND LEI ZHAO¹

¹University of Science and Technology of China
²Princeton University
³Oregon State University
⁴CAS Institute of Modern Physics
⁵Scripps Institution of Oceanography, University of California San Diego
Presenting Author: ztlu@ustc.edu.cn

Recovering earth's climate history from ice cores requires reliable dating of the ice. ⁸¹Kr is ideal for radiometric dating up to more than one million years, but the isotope is so rare that it has long been a challenge to apply ⁸¹Kr dating on ice cores where sample size is limited. We have realized ⁸¹Kr dating of 1-kg ice-core samples from Taylor Glacier, Antarctica. This is made possible by a crucial advance in ⁸¹Kr detection with an all-optical realization of Atom Trap Trace Analysis. The achieved sample-size reduction facilitates ⁸¹Kr dating of basal ice-core sections with direct implications for open questions in paleoclimatology, such as the evolution of glaciers on the Tibetan Plateau or the stability of the Greenland and West-Antarctic ice sheets.

