Effects of impurities on CO₂ in carbonate rocks – potential effect on storage scenarios

RASOUL MOKHTARI KARCHEGANI¹, KOMEIL SHOJAEI², DMYTRO MIHRIN², SAFA KHOJAMLI² AND KAREN L. FEILBERG³

¹Technical University of Denmark (DTU) ²DTU Offshore ³Technical University of Denmark Presenting Author: klfe@dtu.dk

Storage of carbon in the form of compressed CO₂ in the subsurface represents a potentially viable and cost-effective way to reduce emission of heat-trapping CO_2 to the atmosphere. The chemical composition of the CO₂ stream will depend on the fuel sources and capture methods, and impurities in CO₂ impact corrosion and scaling, temperature and pressure conditions, caprock integrity, biological activity in the subsurface, injectivity, interfacial behaviour, mineral trapping and interactions with the rock surface amongst others. It is particularly important to investigate the effects of highly impure CO2 sources on injectivity and storage, as the achievable limits of impurities are crucial for practical implementation in the field. The aim of this study is to consider the effects of CO_2 purity on storage in mature Danish chalk oil reservoirs in late stages of production with geological and petrophysical characteristics favourable to CO₂ injection. The effects of major impurities (SO₂, N₂ and O₂) on phase behavior as well as corrosion in pipelines are quite well understood and some studies have addressed the geochemical effects of impurities for shales and sandstone reservoirs. However, the geochemical effects of longterm storage of impurity-containing CO₂ are not well known, particularly for carbonates, including chalk. Injection testing of these impurities in Danish North Sea Chalk cores are conducted in core flood experiments and static experiments combined with chemical analysis of the effluent fluids and chalk surfaces to investigate the alterations caused by impurities. The effect of SO₂, H₂S and NO₂ impurities in CO₂ are tested on reservoir chalk samples in order investigate chalk dissolution caused by reactive impurities. The initial core flood experiments are carried out at the temperature and pressure of the target depleted chalk reservoirs in the Danish North Sea region using the identified most abundant chemically active impurities. These impurities are combined with CO2 in a high pressure mixing cylinder and compressed to supercritical CO2 conditions at the chosen reservoir temperature and tested on cleaned reservoir core plugs.