Effect of weathering and post weathering processes on lithium isotope fractionation: A case study from the Rajmahal Volcanic Province, India

ANUP KUMAR SHARMA¹, TARUN K. DALAI², PREM CHAND KISKU³, SAMBUDDHA MISRA⁴ AND JITENDRA KUMAR PATTANAIK⁵

¹Indian Institute of Science Education and Research, Kolkata
²Indian Institute of Science Education and Research Kolkata
³CSIR - National Geophysical Research Institute (NGRI)
⁴Indian Institute of Science

⁵Central University of Punjab, Bathinda

Presenting Author: aks18rs032@iiserkol.ac.in

We investigated the bulk, exchangeable and oxyhydroxide phases of two basaltic weathering profiles to evaluate processes regulating distribution of Li and its isotope composition (δ^7 Li). The upward increasing Li/Al ratios in both the profiles suggest that Li is enriched through its adsorption onto the clay minerals and Fe-Mn oxyhydroxides. Significant positive correlations of [Li] with [Al], [Fe] and [Mn] provide further support to the inferred adsorption of Li.

The δ^7 Li values vary in the range of 6.1-8.1 % for the basalts to 0.5 % in the weathered materials. δ^7 Li values exhibit a general upward decreasing variation in the profiles, suggestive of preferential adsorption of ⁶Li onto clay minerals and Fe-Mn oxyhydroxides^[1]. Further support for this inference comes from the inverse correlation of δ^7 Li with Cs/Al and [Mn]. In one profile, the top section shows a decrease in δ^7 Li, adsorbed Li (%), and pH values, whereas the underlying layer shows an increase of these parameters. These observations are presumably due to preferential desorption of ⁷Li from interlayer sites of clay minerals from upper layer and its subsequent re-adsorption onto clay minerals and Fe-Mn oxyhydroxides in the underlying layer as ⁷Li rich porewater migrates downward. The desorption of ⁷Li from interlayer sites likely occurs in conjunction with Al adsorption as soil pH decreases^[2], as evident from an inverse correlation observed between adsorbed Li (%) and exchangeable [A1] in upper layer.

The Rayleigh fractionation factors (α) calculated for Li adsorption are within the range of published values¹. Calculations based on two independent approaches show that the δ^7 Li values of the weathering solutions are about 9-14 ‰ higher than that of parent basalts, and are similar to those reported for rivers draining the basaltic rocks^[3]. While this study underscores the importance of adsorption of Li in regulating the dissolved δ^7 Li in rivers, our results also advocate for comprehensive studies to gain insight into detailed Li cycling and its impact on the δ^7 Li that are transported from weathering profiles.

References

- 1. Wimpenny et al. (2015): GCA 168, 133-150.
- 2. Jin et al. (2010): GCA 74, 3669-3691.
- 3. Liu et al. (2015): EPSL 409, 212-224.