Questioning magnetite key role on H₂ generation yields during alteration of Fe-rich rocks

UGO GEYMOND^{1,2}, OLIVIER SISSMANN¹, ISABELLE MARTINEZ³ AND LAURENT TRUCHE⁴

¹IFP Energies Nouvelles
²IPGP CNRS UMR7154
³Institut de Physique du Globe de Paris
⁴ISTerre, University Grenoble Alpes
Presenting Author: geymond@ipgp.fr

Fe-spinel corresponds to a solid-solution between pure magnetite $(Fe^{III}_{1.00})[Fe^{II}_{1.00}, Fe^{III}_{1.00}]O_4$ and pure maghemite $(Fe^{III}_{1.00})[Fe^{II}_{0.00}, Fe^{III}_{1.67}, \Box_{0.33}]O_4$, where () and [] refers to the tetrahedral and octahedral sites, respectively. The symbol \Box stands for vacancies and occurs specifically in octahedral cation positions of the mineral lattice to ensure the overall neutrality of the mineral [1]. The stability of one endmember with respect to the other, which determines the Fe^{II}/Fe_{tot} ratio in the mineral, was found to highly depend on pH-Eh conditions [2].

Fe-spinel is known to form during alteration of Fe-bearing minerals associated with H_2 generation such as Fe-carbonate or Fe-silicate [3,4,5]. It is usually assumed that pure magnetite is formed during such reaction since conventional characterization tools such as XRD cannot quantify properly the ratio of pure maghemite and pure magnetite within Fe-spinel.

Among all the tools designed to study Fe contained in a given solid sample, ⁵⁷Fe Mössbauer spectroscopy is probably one of the more efficient as it allows to determine both Fe speciation and its distribution between tetrahedral and octahedral sites, with an uncertainty below 1 at% [6]. Up to know, it has been only little used in the research field of natural H₂.

Based on some practical examples from experimental work, we present here to what extent the variability in Fe-spinel composition can affect yields of H_2 generation estimated from mass balance calculation with Fe oxidation. From this, we recommend the use of 57 Fe Mössbauer spectroscopy as a fundamental tool to properly constrain H_2 generation yields from the alteration reactions investigated.

[1] Castro, Vago & Calvo (1996), Faraday Trans., 92, 3371.

[2] Jungcharoen, Pédrot, Heberling, Hanna, Choueikani, Catrouillet, Dia & Marsac (2022), *Environ. Sci.: Nano.*, 9, 2363–2371.

[3] McCollom, Klein, Robbins, Moskowitz, Berquó, Jöns, Bach & Templeton (2016), *Geochimica et Cosmochimica Acta*, 181, 175–200.

[4] Milesi, Guyot, Brunet, Richard, Recham, Benedetti, Dairou & Prinzhofer (2015), *Geochimica et Cosmochimica Acta*, 154, 201–211.

[5] Truche, Bourdelle, Salvi, Lefeuvre, Zug & Lloret (2021), *Geochimica et Cosmochimica Acta*, 308, 42–59.

[6] Daniels & Rosencwaig (1969), *Journal of Physics and Chemistry of Solids*, 30, 1561–1571.