Present and paleo weathering rates by analysis of ²³⁸U-²³⁴U-²³⁰Th disequilibria in soil and paleosols profiles

FRANCOIS CHABAUX¹, ERIC PELT², FRANCISCO HEVIA-CRUZ³, ANTHONY HILDENBRAND³, NATHAN SHELDON⁴, RAPHAEL DI CHIARA ROUPERT², THIERRY PERRONE² AND JÉRÔME VAN DER WOERD²

¹ITES CNRS - Strasbourg France
²ITES CNRS - Université de Strasbourg France
³Université Paris-Saclay, CNRS, UMR8148 GEOPS
⁴University of Michigan

Presenting Author: fchabaux@unistra.fr

The developments carried out at Strasbourg on the use of $^{238}U^{-234}U^{-230}$ Th radioactive disequilibria in weathering profiles to determine their rate of formation were made in close collaboration, for some of them, with Susan Brantley's group (1-5).

This work has led to the definition of a now classical approach for the determination of these parameters. More recent work, notably at the Strengbach site, illustrates the benefits of combining U-series disequilibria with cosmogenic ¹⁰Be analysis to discuss the degree of millennial stability of the regolith between production by alteration and destruction by denudation (6). We have also shown that application of $^{238}U^{-234}U^{-230}Th$ disequilibrium methodology for the determination of the regolith production rates in thick weathering profiles, marked by long histories, cannot be recovered by applying in one step to the entire weathering profile the modeling approach classically used to interpret the U-series nuclides. The modeling has to be made on subsections of relatively small size (< 1 or 2 m of thickness), so that the model assumptions can be met, especially the constancy of the mobility parameters along the weathering zone (7). Currently, we are seeking to assess the potential of applying U-disequilibrium in paleosols - based on paleosols collected in the Azores - to determine the paleo-alteration rates at the origin of these formations. These results could open up a new, as yet little-explored application field for U series to reconstruct the past history (<250ka) of terrestrial weathering.

1- Pelt et al. (2008) EPSL, 276 98-105 2- Ma et al. (2010) EPSL 297, 211-225 3- Ma et al. (2012) Geochimica et Cosmochimica Acta, 80, 92-107 4- Chabaux F. et al. (2013) Geochimica et Cosmochimica Acta, 100, 73-95. 5- Ma et al. (2013). Journal of Geophysical Research. Earth Surface 118, 722-740. 6- Ackerer et al. (2016) EPSL 453, 33-43 7- Jia et al. (2021) Chem. Geol., 574 - 120241