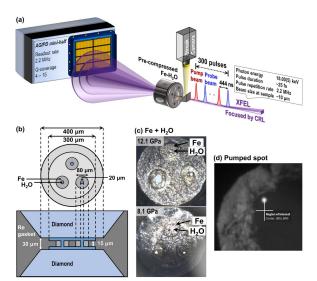
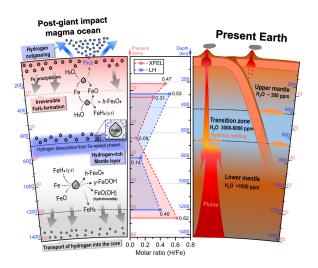
A role for iron hydrogenation in the layered redox processes of the postgiant impact Earth

JINHYUK CHOI¹, RACHEL HUSBAND², HUIJEONG HWANG³, SEOHEE YUN¹, JEONGMIN LEE¹, HEEHYEON SIM¹, YEONHAK JUNG¹, TAEHYUN KIM⁴, YOONAH BANG⁵, ANAND DWIVEDI⁶, JOHANNES BUCHEN⁷, HAUKE MARQUARDT⁸, ANSHUMAN MONDAL², MUNGO FROST⁹, ALEXANDER GONCHAROV¹⁰, VALERIO CERANTOLA¹¹, ERIC EDMUND¹², DR. STELLA CHARITON, PHD¹³, VITALI PRAKAPENKA¹³, SANGSOO KIM¹⁴, DAEWOONG NAM¹⁴, MALCOLM MCMAHON¹⁵, STEWART MCWILLIAMS¹⁵, HANNS-PETER LIERMANN² AND YONGJAE LEE¹

¹Yonsei University

- ²Deutsches Elektronen-Synchrotron
- ³Gwangju Institute of Science and Technology
- ⁴Arizona State University
- ⁵Korea Atomic Energy Research Instutite


⁶European XFEL


- ⁷Bayerisches Geoinstitut, University of Bayreuth
- ⁸Oxford University
- ⁹SLAC National Accelerator Laboratory
- ¹⁰Carnegie Institution for Science
- ¹¹Università degli Studi di Milano Bicocca
- ¹²Carnegie Institution of Washington
- ¹³The University of Chicago
- ¹⁴Pohang Accelerator Laboratory
- ¹⁵University of Edinburgh

Presenting Author: jinhyukchoi@yonsei.ac.kr

The Moon-forming impact (MFI) and subsequent formation of the global magma ocean would have set the last major constraints in the chemical and physical co-evolution of the mantle and the core. Based on the scenario that the core of the impactor merged into the proto-Earth, we have investigated depth-dependent partitioning of hydrogen into iron under impactdriven reaction environment between the metallic core of the impactor, e.g., iron, and the volatile component in the post-giant impact Earth, e.g., H₂O. Iron compressed with H₂O at pressures of 8, 12, 24 and 53 GPa, corresponding to depths of ca. 200, 300, 750 and 1200 km, respectively, was irradiated by high-brilliance X-ray free electron laser (XFEL) pulses to pump and probe the chemical reactions at 2.2 MHz and 30 Hz repetitions. Through fast heating process in pico-to-nanosecond range, we have observed depth-dependent formations of iron oxides (FeO and Fe₃O₄), hydrides (γ -FeH_x, ε '-FeH_x and FeH₂) and hydroxides (γ -FeOOH and hydrohematite) in partially-quenched states. We find that the molar ratio of H with respect to Fe in all the reaction products shows ~5 fold decrease in the depth range between from 300 and 750 km. This suggests significant modulation in hydrogen partitioning into the iron compounds in the region

including the present-day mantle transition zone (MTZ). The resulting abundance of hydrogen in this region would have enabled the formation of hydrous silicates such as wadsleyite and ringwoodite to explain ca. 34.4% of the water storage capacity in the present MTZ. On the other hand, the H/Fe molar ratio shows over 50% hydrogen partitioning into the iron compounds at depths below 1200 km, which would have migrated downwards to form the early core to account ca. 3.5-10.6 % of its present light element budget.

