
²¹⁰Po-²¹⁰Pb disequilibrium in the deep water column of global oceans as a metric for vertical remineralization of biogenic particulate matter

MARK M BASKARAN AND DENADA PLANAJ

Wayne State University

Presenting Author: Baskaran@wayne.edu

The disequilibria between the progeny of ²³⁸U in aqueous system result from the differences in their nuclear and geochemical properties. Of these, disequilibria between ²²⁶Ra $(T_{1/2}: 1600 \text{ yr}) - {}^{210}\text{Pb} (22.3 \text{ yr}) - {}^{210}\text{Po} (138.4 \text{ d})$ are the most widely utilized pairs, in particular ²¹⁰Pb/²²⁶Ra (both ²¹⁰Pb excess and deficient methods). Most of the ²¹⁰Pb in surface waters of the open ocean in non-polar regions are primarily derived from atmospheric fallout, with $^{210}\text{Po}/^{210}\text{Pb}$ activity ratio (AR) of < 0.1. In contrast, most of the ²²⁶Ra are derived from vertical advection and diffusion of ²²⁶Ra from sediment-water interface. The widely reported ²¹⁰Pb scavenging residence time is >20 years during which the 210Po and 210Pb are expected to be in secular equilibrium. However, analysis of all published deep-water profiles of ²¹⁰Po and ²¹⁰Pb, indicate < 50 % had (²¹⁰Po/²¹⁰Pb) AR ratio of 1.0±0.1. A strong affinity of ²¹⁰Po to particulate organic matter (POM) is well documented and when particulate organic matter, with ²¹⁰Po/²¹⁰Pb AR >1.0 sinks, it undergoes remineralization affecting ²¹⁰Po concentration at relatively higher rate compared to ²¹⁰Pb, thus affecting (²¹⁰Po/²¹⁰Pb)_T AR at discrete depths. The inventory-based K_ds of ²¹⁰Po and ²¹⁰Pb are comparable in the deep oceans, although the mean-life of ²¹⁰Pb is 59 times larger than that of ²¹⁰Po. Recent data synthesis of published particulate dissolved and total ²¹⁰Po and ²¹⁰Pb in the global oceans indicate the inventory-based fractions of particulate (>1 mm) ²¹⁰Po and ²¹⁰Pb vary widely between ocean basins, primarily depending on the concentrations of lithogenic components. The inventory-based fractionation factor (FF_{Po/Pb}, ratio of the distribution coefficient of ²¹⁰Po to that of ²¹⁰Pb) show the pattern: Atlantic >Arctic > Pacific > Antarctica > Indian Ocean. A comparison of the vertical profiles of (210Po/210Pb)_n (Fig. 1), K_ds of ²¹⁰Po and ²¹⁰Pb, and fractionation factor in the global ocean basins (N. Atlantic, E. Pacific, W. Arctic, Indian and Antarctic), along with anthropogenic radionuclides (137Cs, ⁹⁰Sr & ^{239,240}Pu) will be presented. A summary of earlier work and future direction will be discussed.

