Investigating In Situ Methanogenic Activity in Antrim Shale via Deuterium Injection

ELLIOTT BARNHART¹, HANNAH SCHWEITZER², MATTHEW VARONKA¹, ELIZABETH J TOMASZEWSKI¹, KILIAN ASHLEY³, MICHAEL CARLEY⁴, JAMES SCHRAMSKI⁴, ANNA MARTINI⁵, JENNIFER MCINTOSH⁶, SARA L. CALDWELL ELDRIDGE¹, PAUL C. HACKLEY¹, MATTHEW FIELDS⁷, ALFRED B CUNNINGHAM⁷ AND SHUHEI ONO⁸

¹U.S. Geological Survey
²NETL
³University of Southern California
⁴Riverside Energy
⁵Amherst College
⁶University of Arizona
⁷Montana State University
⁸Massachusetts Institute of Technology
Presenting Author: epbarnhart@usgs.gov

Microbial methane (CH₄) accumulations in terrestrial organicrich subsurface reservoirs are prevalent worldwide, but the timing and ongoing nature of deep subsurface CH₄ generation remains uncertain. In this study, downhole sampling and an in situ injection of deuterated water (D₂O) were used to investigate the microbial communities and methanogenic activity in Antrim Shale within the Michigan Basin, USA. The Antrim Shale stands out for its secondary biogenic CH₄ production from depths of 150 to 600 meters. Three production wells were initially sampled across the northern portion of the Michigan Basin with diffusive microbial samplers to examine the microbial ecology and to inoculate laboratory microcosms. Methanogens were detected and CH₄ production was evident in microcosms from all three wells. Subsequently, one well underwent a 2384-liter injection of 0.084% D₂O to isotopically label newly generated CH₄ (i.e., CH_3D , CD_4 etc.). Gas samples were collected at 21, 50 and 71 days postinjection at the wellhead to monitor any changes in gas isotopes. At 85 days postinjection, 3179 liters of water was pumped to collect final gas and water samples. The results provided valuable insights into methanogenic microbial communities and their activity in subsurface environments, with broad implications for CH4 resource assessments and environmental management. Understanding the spatiotemporal dynamics of CH₄ generation in the subsurface is crucial for informing resource exploitation strategies and implementing effective environmental conservation measures.