Enhancing biochar uptake efficiency for 129-I and 99-Tc through acid activation prior to pyrolysis

DR. PENG LIN¹, BRENNAN O FERGUSON², KARAH M GREENE³, WEI XING³, CHRISTOPHER BAGWELL⁴ AND DANIEL I. KAPLAN³

¹Savannah River Ecology Laboratory

²University of Georgia's Savannah River Ecology Lab

```
<sup>3</sup>University of Georgia
```

⁴Pacific Northwest National Laboratory

Presenting Author: Peng.Lin@uga.edu

Biochar has shown great promise for the sequestration of several pollutants, including metals (e.g., Hg) and cationic radionuclides (UO_2^{+2}) . It also has the potential to sequester anions although the anion exchange functionality of biochar is not well understood. Inexpensive and highly effective sorbents are needed for the *in situ* remediation of Department of Energy (DOE) contaminated sites, especially for two anionic radionuclides, ¹²⁹I and ⁹⁹Tc, which are common human health risk drivers in radionuclide-contaminated lands. However, the application of biochar for radionuclide sequestration under DOE waste conditions has not been investigated. To address this DOE complex-wide need, batch sorption experiments were conducted using biochar derived from pecan shells to examine the possibility of biochar as a low cost (<\$2/kg) and high-capacity sorbent material for the sequestration of 99Tc and three speciation of 129 I, including iodide (I⁻), iodate (IO₃⁻), and organic iodine (org-I). Two temperature pyrolysis (500 °C and 700 °C) and two acid-activation (H₃PO₄ and HCl) were conducted to prepare the biochar sorbents prior to sorption experiments. Besides, characterization of the biochars were also performed, including their morphologies using scanning electron microscopy (SEM), surface areas, and organic compositions by Nuclear magnetic resonance (NMR). Our results indicated that acid-activated biochar had much higher capacities (in terms of distribution coefficient, $K_d = [anion_{solid}]/[anion_{ao}])$ to sequestrate the ⁹⁹Tc and different iodine species, compared with the non-acid-activated biochar. In general, the H₃PO₄-activated biochar (500 °C) was the most effective sorbent for two anionic radionuclides, with ⁹⁹Tc K_d of 49,390±14,268 mL/g, iodide K_d of 2,433±312 mL/g, and iodate K_d of 410±168 mL/g on average, respectively. The HCl-activated biochar (700 °C) was also effective at sequestering ⁹⁹Tc (K_d of 7,864±5,585 mL/g) and iodide (K_d of 2481 ± 237 mL/g), but not for iodate. NMR analysis suggested that the strong sorption capacity for these two biochars may be due to the formation of abundant alkene, aromatic and heteroaromatic functional groups. Our study provided the evidence supporting the validation of functionalized biochar as a cost effective, longterm option for in situ sequestration of ¹²⁹I and ⁹⁹Tc for contaminated areas at several DOE sites.