Late Neoarchean–Paleoproterozoic tectonic evolution in the Khondalite Belt, North China Craton: Insights from geochemistry, geochronology, and noble gases of granitoid gneisses

WENQI LI¹, HUICHUAN LIU¹, JIANFA CHEN², ZHENG ZHOU³ AND GREG HOLLAND⁴

¹China university of Petroleum Beijing

 ²College of Geoscience, China University of Petroleum (Beijing)
³Lancaster Environmental Centre, Lancaster University, UK
⁴Department of Earth and Environmental Sciences, the University of Manchester, UK
Presenting Author: w.li34@lancaster.ac.uk

Granitoid rocks of late Neoarchean-early Paleoproterozoic age are widely exposed in the central segment of the Khondalite Belt (KB), North China Craton (NCC)[1]. However, tectonic evolution that generated these rocks remains unclear. In this study, we analyzed 17 rock samples from the Daqingshan area for their whole-rock geochemistry, zircon U-Pb geochronology, Sr-Nd-Hf-Pb and noble gas isotopes. By integrating these data with geological field observations, we propose a model to describe the tectonic evolution of the area, which provides a new insight for the development of the NCC during the late Neoarchean-early Paleoproterozoic period.

U-Pb analysis of zircons from twelve representative granitoid samples suggests that they were emplaced at ca 2.57-2.51 Ga, 2.45 Ga and 2.37-2.27 Ga, and underwent multi-stage metamorphism at ca 1.90-1.85 Ga. Lu-Hf isotopes in zircons show that the granitoids of 2.57-2.51 Ga and 2.45 Ga have positive zircon e_{Hf(t)} values with an average of +3.91, and twostage depleted mantle zircon Hf model ages (T_{DM2}) clustering around 2.7-3.0 Ga. This indicates a juvenile crustal source that formed at ca 2.7-3.0 Ga. While the granitoids of 2.37-2.27 Ga have negative zircon eHf(t) values with an average of -1.92, and two-stage depleted mantle zircon Hf model ages (T_{DM2}) clustering around 2.8-3.0 Ga. It indicates ancient crustal recycling that formed at ca 2.8-3.0 Ga. Whole-rock geochemical analysis of granitoid samples show characteristics of high total rare-earth-element (REE), enriched in light REE, and depleted in heavy REE. Primitive-mantle-normalized trace-elements show that the granitoid samples are depleted in high-field-strength elements (Nb, Ta, U and Ti) and enriched in large-ion lithophile elements (Ba, K, Rb and Sr). In general, the samples have geochemical characteristics consistent with cordilleran I-type granitoids, which are formed in subduction-related magmatic arcs. ³He/⁴He ratios extracted from granitoid samples by crushing and stepwise heating range from 5.34×10^{-8} -7.56 $\times 10^{-7}$, indicating a typical crustal origin. ⁴He/²⁰Ne ratios imply little air contamination. By combining rock geochemistry with noble gases, we present models for the crustal melting and magma mixing processes during the late Neoarchean-Paleoproterozoic tectonic evolution in the KB, NCC.