Building the foundation for environmental nanogeochemistry: a survey of natural nanoparticle systems and standards across laboratories

CHAD W CUSS¹, MARC F. BENEDETTI², TIANNA BRAKE³, CLAIRE CHURCHILL³, CARLA ANTONELLA COSTAMANGA⁴, SALANI FERNANDO³, THILO HOFMANN⁵, FRANK VON DER KAMMER⁵, LUCAS MESNARD SR.⁶, MANUEL MONTANO⁷, JAMES F RANVILLE⁸, VERA SLAVEYKOVA⁹, MICKAEL THARAUD¹⁰, KEVIN J WILKINSON¹¹ AND ISABELLE A.M. WORMS¹²

¹Memorial University of Newfoundland
²Institut de Physique du Globe de Paris, Université Paris Cité
³Memorial University of Newfoundland, Grenfell Campus
⁴Universidad de Buenos Aires
⁵Centre for Microbiology and Environmental Systems Science, University of Vienna
⁶Université PSL (Paris Sciences & Lettres)
⁷Western Washington University
⁸Colorado School of Mines
⁹University of Geneva
¹⁰IPGP - Université Paris Cité
¹¹University of Montreal
¹²University of Geneva/ Department FOREL
Presenting Author: chadcuss@grenfell.mun.ca

Advances in nanometrology have facilitated improved analysis of particle-by-particle properties and their distributions amongst different sizes and colloidal types in natural systems, providing unprecedented potential for characterizing their diversity and environmental functions. *Environmental Nanogeochemistry* applies these techniques to characterize the range of natural nanoparticle systems (NNS) and their distributions in terms of integrated multi-elemental, multi-particle, and multi-component fingerprints, as well as their corresponding functionality and impacts of disturbances thereupon.

Given the large number of natural processes known to produce nanoparticles in diverse aquatic systems, a broad range of differentiable natural nanoparticle systems (NNS) is expected. Advancements in environmental nanogeochemistry will therefore require a massive effort to characterize and compare the broad range of NNS and their dynamics, in turn requiring comparable laboratories and internationally, analyses across with collaboration between geochemists, nanoscientists, data scientists, and analytical chemists. There is also a need to compare and combine the results of particle-by-particle and complementary analyses using techniques such as spICP-TOFMS and AF4-ICPMS. Representative NNS standards are therefore desirable for intra- and inter-laboratory comparisons of sample treatments, analysis, data analysis, and various analytical methods.

After briefly introducing environmental nanogeochemistry, this presentation will discuss the development and comparison of NNS standards across laboratories, and the results of spICP-TOFMS and AF4-ICPMS analysis for both these standards and a range of NNS.