Sulfuric acid disturbance in CO₂ effects of the Tibetan Plateau weathering: evidence from river geochemistry

WENJING LIU AND ZHIFANG XU

Institute of Geology and Geophysics, Chinese Academy of Sciences

Presenting Author: liuwenjing@mail.iggcas.ac.cn

Sulfuric acid (H_2SO_4) generated during oxidative weathering of pyrite (OWP) participates in chemical weathering, which has been argued as an important process counteracting the accelerated atmosphere CO_2 consumption by silicate weathering in Cenozoic. As the highest and largest plateau formed in Cenozoic, direct and quantitative evidence for H_2SO_4 involvement in weathering and its impact on carbon cycling are lacking in the Tibetan Plateau.

Systematic studies on water chemistry, carbon isotope $(\delta^{13}C_{DIC})$ and sulfur isotope $(\delta^{34}S_{SO4})$ were conducted in watersheds with different lithology and climate backgrounds on the Tibet Plateau. It has been found that: 1) OWP is the main source of riverine sulphate in the small catchments in eastern plateau (accounting for 69~77% of total); even in the northeastern watershed with a dry and cold climate where evaporative salts are widely distributed, its average contribution reached 38%, revealing the deep involvement of H_2SO_4 in the plateau weathering; 2) lithology and erosion rate together control the rate of H₂SO₄ generation and the rate of CO₂ releasing during its reacting with carbonate minerals. The H₂SO₄ generation rate of OWP in glacial watersheds is ~5 times higher than that in nonglacial watersheds; the CO₂ releasing rate in the sedimentary watersheds is ~3 times higher than that in the granite watershed, due to its high contents of sulfide and carbonate minerals, and weak erosion resistance; 3) 80% of the CO₂ flux consumed by silicate rock weathering is counteracted by the CO₂ released by H₂SO₄ dissolution of carbonate minerals in small watersheds in the eastern edge of the plateau. Previous river hydrogeochemistry studies without quantification of H₂SO₄ participation may have largely overestimated the chemical weathering carbon sink effect of the Tibetan plateau.