Sulfur sourcing at Mars-relevant lakes informs controls on magnesium sulfate precipitation

CHRISTOPHER J. TINO, SERHAT SEVGEN, LIAM E. WALTERS AND BENJAMIN M. TUTOLO

University of Calgary

Presenting Author: christopher.tino@ucalgary.ca

The surface of Mars underwent a dramatic episode of drying \sim 3.7-3.5 billion years ago, indicated in part by the presence of magnesium sulfate (MgSO₄) minerals recently confirmed by the Curiosity rover at Gale crater [1]. Yet naturally forming MgSO₄ remains poorly understood, along with possible constraints it could provide for the habitability of ancient Mars.

Analog environments on Earth can provide an empirical framework within which to interpret $MgSO_4$ on Mars. Hundreds of evaporative lakes are scattered across the Fraser Plateau in British Columbia, Canada, and among them are rare sites with active $MgSO_4$ precipitation (e.g., epsomite $[MgSO_4 \cdot 7H_2O]$). Such settings result from a chemical divide scenario where SO_4^{2-} concentrations outstrip Ca^{2+} , leaving Mg^{2+} , SO_4^{2-} , and Cl⁻ as the predominant ions in solution. Basque Lake 2 serves as an ideal example. Importantly, lakes proximal to Basque follow different chemical divide pathways. These include the phosphorus-rich Last Chance and Goodenough systems, which are low in dissolved Mg^{2+} and do not precipitate $MgSO_4$. Investigating these Fraser Plateau lakes may reveal how relatively fine-scale differences in the weathering environment and ecological setting can impact the likelihood of $MgSO_4$ precipitation.

Here we present sulfur stable isotope data (δ^{34} S) in tandem with dissolved ion concentrations from three lakes: Basque Lake 2, Last Chance Lake, and Goodenough Lake. The geologic source of sulfur appears distinct at each setting. Basque Lake 2 presents low sulfate isotope values ($\delta^{34}S = -6.2$ to -6.8%), possibly indicative of sulfide weathering despite lake water pH of ~8. Sulfate δ^{34} S is significantly higher at both Last Chance $(\delta^{34}S = 20.9 \text{ to } 25.0\%)$ and Goodenough (33.9 to 73.0‰). Additionally, the uniformity of Basque sulfate isotope data ($\sigma =$ 0.2‰) does not indicate microbial sulfate reduction (MSR) in the shallow sediments, while Goodenough exhibits a positive, MSRsignifying shift of >30‰ across the sediment-water interface. Taken together, these data indicate that (1) the absence of a biological sulfate sink near the sediment-water interface and (2) a weak relationship between sulfide weathering and lake water pH represent potential controls on lacustrine MgSO₄ formation. [1] Chipera et al. (2023) J. Geophys. Res. Planets, 128(11), e2023JE008041.