Novel, economically sustainable, and environmentally friendly extraction of Lithium from alternate brine sources using Direct Lithium Extraction

KARTHIK RAMACHANDRAN SHIVAKUMAR, ASHKAN ZOLFAGHARI, FANGSHUAI WU AND DANIEL S. ALESSI

University of Alberta

Presenting Author: kramacha@ualberta.ca

The demand for Lithium (Li) is projected to increase exponentially in the next decade, making it a critical element that is susceptible to supply chain disruptions. Emerging Direct Lithium Extraction (DLE) technologies have the potential to expand the Li resource base, as low Li grade oil-field brines are among the most promising potential Li-bearing water (LBW) sources. Ion-exchange type DLE (i-DLE) materials have proven to be most effective in extracting Li because they have far lower freshwater use than conventional mining. The rapid extraction rates and high Li uptake capacities of i-DLE adsorbents make i-DLE scalable. However, DLE projects in the U.S. and Canada are hindered by the constraint on the economics of development projects, life cycle analyses of the i-DLE adsorbents, and compounds detrimental to i-DLE sorbents that are found in LBWs. Some sources of LBWs, including oil-field brines, can contain dissolved organic compounds and H₂S which are strong reducing agents that can lead to sorbent fouling and degradation. With manganese spinel type i-DLE adsorbents being the most commonly studied and tested, further research into the process economics in terms of recyclability/longevity of the adsorbent is required. In this study, we tested a lithium manganese oxide (LMO) i-DLE sorbent that is coated with 7.5 nm of zirconium dioxide to inhibit contact between reducing agents in the brine and the sorbent surface. Results show that in a field-collected oilfield brine containing organic compounds and trace H₂S, the Li uptake was 24 mg g⁻¹ in 1 h. Embedding the i-DLE sorbent into a polyvinylidene fluoride (PVDF) vesicular binder preserved the surface area of the nanoparticulate aggregate of LMO, achieving a Li uptake of 20 mg g^{-1} in 6 h. Furthermore, the Mn loss per cycle, which is as high as 4.5% in the unmodified sorbent, was reduced by 50% using the 7.5 nm zirconium coating and by 90% using the PVDF binder. X-ray absorption spectroscopy confirms no structural change in the LMO after 16 cycles, showing a theoretical recyclability of 100 cycles. The small footprint and rapid extraction kinetics make i-DLE technology suitable for rapid expansion of Li production from LBWs.