Secular variation of lithium concentration and isotopic composition of Phanerozoic and Neoproterozoic seawater: Evidence from fluid inclusions in marine halite

MEBRAHTU F WELDEGHEBRIEL^{1,2}, TIM K LOWENSTEIN², JACK G MURPHY³, DR. HANA JURIKOVA⁴, JAMES W. B. RAE⁴, ELIZABETH M NIESPOLO¹ AND JOHN A HIGGINS¹

¹Princeton University
²Binghamton University
³University of Pennsylvania
⁴University of St Andrews

Presenting Author: mweldeg@princeton.edu

Changes in the global lithium cycle, as recorded in the seawater Li concentration ([Li⁺]_{SW}) and isotopic composition $(\delta^7 Li_{sw})$, have emerged as a promising tracer for reconstructing the long-term controls of changes in seawater chemistry and Earth's geologic carbon cycle. Recent records of $\delta^7 Li_{ew}$ derived from foraminifera [1], brachiopods [2,3], corals [4], and dolomite [5] show an $\sim 8-9\%$ increase over the past 60 million years (Ma) and shallow marine carbonates [6] show a substantial unidirectional increase of ~23‰ over the past 550 Ma. However, laboratory experiments [7, 8] and studies of drill cores from modern carbonate platforms [9] suggest that the δ^7 Li values from carbonates are complicated by vital effects, diagenesis, and mineralogy (e.g., calcite vs. aragonite). Thus, other archives are needed to determine whether carbonate $\delta^7 Li$ values indeed reflect secular changes in $\delta^7 Li_{sw}$. Recent experimental work shows the potential use of marine halites as archives of ancient seawater δ^7 Li [10]. Here, we present δ^7 Li and [Li⁺] of fluid inclusions in halite from a large suite of Neoproterozoic and Phanerozoic evaporite basins with marine 87Sr/86Sr values. These fluid inclusions were previously used to document the major and trace element composition of paleoseawater, including lithium concentrations [11,12,13]. [Li⁺]_{SW} varied twelve-fold and oscillated twice between high- and low-Li concentrations since 550 Ma, in rhythm with $[Ca^{2+}]_{SW}$, $[Sr^{2+}]_{SW}$, modeled degassing rate and atmospheric pCO₂, aragonite-calcite-seas, KCl-MgSO₄ evaporites, and greenhouse-icehouse climates [11,12,13,14,15]. $\delta^7 Li_{SW}$ varied ~17–19‰ over the past 550 Ma, and antiparallels the $[Li^+]_{SW}$, $[Ca^{2+}]_{SW}$, $[Sr^{2+}]_{SW}$, and parallels the Mg/Ca_{sw}. Secular variations in seawater chemistry point to the importance of plate tectonic activity and seafloor hydrothermal systems in regulating the composition of Earth's hydrosphere and atmosphere.

Misra and Froelich, 2012; [2] Washington et al., 2020; [3]
Gaspers et al., 2021; [4] Murphy et al., 2019; [5] Liu et al., 2023;
[6] Kalderon-Asael et al., 2021; [7] Vigier et al., 2015; [8]
Dellinger et al., 2018; [9] Murphy et al., 2022; [10] Lin et al., 2024; [11] Weldeghebriel et al., 2022; [12] Weldeghebriel et al.,