Lithospheric delamination in Northern Apennines as revealed by modelling of He, CO2 isotopes and heat flow data

JEAN DE LA PAIX IZERUMUGABA^{1,2}, FRÉDERIC MOUTHEREAU^{3,4} AND ANNE BATTANI⁵

¹CNRS - IPREM UMR 5254

²Université de Pau et des Pays de l'Adour (UPPA), LFCR, IPREM

³Université Paul Sabatier Toulouse III, GET

⁴Centre National de la Recherche Scientifique (CNRS)

⁵Université de Pau et des Pays de l'Adour

Presenting Author: jdlpizerumug@univ-pau.fr

³He/⁴He ratios measured in twelve CO₂-dominated gas seeps from the Tuscany-Roman Volcanic Provinces in Italy range between 0.07 and ~1.7 R_a; in agreement with previous studies [1]. He [2, 3] and d¹³CO₂ [3] isotopes systematics indicate a dominant crustal source (up to 95%) and a variable but significantly lower contribution from the mantle. The CO₂ mainly originates from the decarbonation of limestone, and this requires melting of carbonates at high temperature and pressure met in the mantle; and correlates with the presence of crustal carbonate melts in the low velocity mantle wedge [4].

Low He ($0.6 - 1.6 R_a$) and high Sr (87 Sr/ 86 Sr = 0.709514 - 0.710595) isotopes systematics of olivine and pyroxene mantle phenocrysts of the same region have been previously interpreted to be related to the addition of a crustal signature into a HIMU-type magma in the mantle by subduction of the continental crust fluids/ rocks [5], thus explaining the much lower 3 He/ 4 He compared to typical oceanic subduction (average= 5.37 ± 1.82 ; [6]).

Here we explore a model in which the crustal contamination expresses the delamination of the continental lithosphere of the (previously subducted) Adria microplate, as inferred from geophysics (e.g. [7]) and mechanical modelling [8]. We present a thermal and helium isotope modelling that accounts for radiogenic heat and ⁴He production in the U, Th and K – rich delaminated continental crust and in the variably (SCLM age and He residence time - dependant) ⁴He-rich sub-continental lithospheric mantle. Our model supports a tectonic scenario in which the unusually low ³He/⁴He values, and heat flow data are reproduced by the delamination of a ≈15km – thick continental crust in the mantle.

[1] Minissale, 2004. Earth-Sci. Rev. 66(1-2), 89-141.

[2] Sano and Marty, 1995. Geol. 119(1-4), 265-274.

[3] Sano and Wakita, 1985. *Geophys. Res.: Solid Earth.* 90(B10), 8729-8741.

- [4] Frezzotti et al., 2009. Geol. 262(1-2), 108-120.
- [5] Martelli et al., (2004). Earth Planet. Sci. Lett. 224(3-4), 295-308.
- [6] Hilton et al., 2002. Mineral. Geochem. 47(1), 319-370.
- [7] Agostinetti and Faccenna., 2018. Res. Lett. 45(9), 4017-4024.

[8] Channell and Mareschal, 1989. *Geol. Soc. Spec. Publ.* 45(1), 285-302.