[5] Wood, Smythe, & Harrison. 2019, Am Mineral, 104, 844

Limited U isotope fractionation during evaporation: insights from gas levitation experiments

ZIYAN HAN¹, HAOYU LI², HAOLAN TANG³, FRANÇOIS L.H. TISSOT⁴ AND HEJIU HUI⁵

¹Nanjing University

 ²California Institute of Technology
³CAS Key Laboratory of Crust-Mantle Materials and Environments/Deep Space Exploration Laboratory, University of Science and Technology of China
⁴Caltech
⁵State Key Laboratory for Mineral Deposits Research & Lunar

and Planetary Science Institute, School of the Earth Sciences and Engineering, Nanjing University

Presenting Author: hanzyplanet@gmail.com

Chondrites and their components exhibit discernible uranium isotope variations [1], which can significantly impact Pb-Pb chronology [2-3]. While the most extreme ²³⁵U excess documented in CAIs (+59 ‰) is best explained by ²⁴⁷Cm decay [4], the smaller effects seen in most CAIs (-6 to +1 ‰) and chondrules (-1 to -0.2 %) could stem from ²⁴⁷Cm decay, evaporation, condensation, or a combination thereof. So far, the contribution of evaporation has not been experimentally evaluated. Since U is a refractory element with half condensation temperature of 1609 K [5], studying its behaviour during evaporation requires ultra-high temperature furnace. Here, we employed a gas-mixing aerodynamic levitation laser furnace to investigate the volatility and isotope behaviour of U in type I chondrule-like melt at temperature between 1633 and 2000°C, in various atmospheres (air, Ar, and H₂-Ar mixture), for durations of 180s to 900s. The chondrule-like starting material was doped with 100ppm U using HP-U std. Samples evaporated in Ar exhibit a maximum U loss of up to 60%, and homogeneous U content. The isotope data is consistent with a fractionation factor $\alpha^{238/235}$ U_{gas-melt} of 0.9998, higher than the predicted values (0.997) with 75 % saturation for UO₃ gas species. In contrast, experiments conducted in air show near total U loss (up to 97%), and the samples exhibit heterogeneous distribution of U across the hemispherical profile. Despite the extensive U loss, the samples display limited isotopic fractionation relative to the starting material (from -0.13 to +0.14 ‰), indicating diffusionlimit U evaporation in the melt. Overall, our results suggest that evaporation can hardly modify U isotopic composition in the melt even under oxidizing conditions. The wide range of d²³⁸U seen in CAIs thus requires other drivers, such as ²⁴⁷Cm decay, nucleosynthetic heterogeneity, and kinetically driven isotopic fractionation during condensation. More details will be presented at the conference.

Reference

[1] Li & Tissot, 2023, Chem Geol. 618, 121221

[2] Brennecka, Weyer, Wadhwa, et al. 2010, Science, 327, 449

^[3] Tissot & Dauphas 2015 GeCoA, 167, 113